亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a new approach to address the issue of class imbalance in graph neural networks (GNNs) for learning on graph-structured data. Our approach integrates imbalanced node classification and Bias-Variance Decomposition, establishing a theoretical framework that closely relates data imbalance to model variance. We also leverage graph augmentation technique to estimate the variance, and design a regularization term to alleviate the impact of imbalance. Exhaustive tests are conducted on multiple benchmarks, including naturally imbalanced datasets and public-split class-imbalanced datasets, demonstrating that our approach outperforms state-of-the-art methods in various imbalanced scenarios. This work provides a novel theoretical perspective for addressing the problem of imbalanced node classification in GNNs.

相關內容

節點分類任務是一種算法,其必須通過查看其鄰居的標簽來確定樣本(表示為節點)的標簽。

This paper introduces an innovative deep joint source-channel coding (DeepJSCC) approach to image transmission over a cooperative relay channel. The relay either amplifies and forwards a scaled version of its received signal, referred to as DeepJSCC-AF, or leverages neural networks to extract relevant features about the source signal before forwarding it to the destination, which we call DeepJSCC-PF (Process-and-Forward). In the full-duplex scheme, inspired by the block Markov coding (BMC) concept, we introduce a novel block transmission strategy built upon novel vision transformer architecture. In the proposed scheme, the source transmits information in blocks, and the relay updates its knowledge about the input signal after each block and generates its own signal to be conveyed to the destination. To enhance practicality, we introduce an adaptive transmission model, which allows a single trained DeepJSCC model to adapt seamlessly to various channel qualities, making it a versatile solution. Simulation results demonstrate the superior performance of our proposed DeepJSCC compared to the state-of-the-art BPG image compression algorithm, even when operating at the maximum achievable rate of conventional decode-and-forward and compress-and-forward protocols, for both half-duplex and full-duplex relay scenarios.

This paper presents a novel framework for continual feature selection (CFS) in data preprocessing, particularly in the context of an open and dynamic environment where unknown classes may emerge. CFS encounters two primary challenges: the discovery of unknown knowledge and the transfer of known knowledge. To this end, the proposed CFS method combines the strengths of continual learning (CL) with granular-ball computing (GBC), which focuses on constructing a granular-ball knowledge base to detect unknown classes and facilitate the transfer of previously learned knowledge for further feature selection. CFS consists of two stages: initial learning and open learning. The former aims to establish an initial knowledge base through multi-granularity representation using granular-balls. The latter utilizes prior granular-ball knowledge to identify unknowns, updates the knowledge base for granular-ball knowledge transfer, reinforces old knowledge, and integrates new knowledge. Subsequently, we devise an optimal feature subset mechanism that incorporates minimal new features into the existing optimal subset, often yielding superior results during each period. Extensive experimental results on public benchmark datasets demonstrate our method's superiority in terms of both effectiveness and efficiency compared to state-of-the-art feature selection methods.

This paper studies the fair transmission design for an intelligent reflecting surface (IRS) aided rate-splitting multiple access (RSMA). IRS is used to establish a good signal propagation environment and enhance the RSMA transmission performance. The fair rate adaption problem is constructed as a max-min optimization problem. To solve the optimization problem, we adopt an alternative optimization (AO) algorithm to optimize the power allocation, beamforming, and decoding order, respectively. A generalized power iteration (GPI) method is proposed to optimize the receive beamforming, which can improve the minimum rate of devices and reduce the optimization complexity. At the base station (BS), a successive group decoding (SGD) algorithm is proposed to tackle the uplink signal estimation, which trades off the fairness and complexity of decoding. At the same time, we also consider robust communication with imperfect channel state information at the transmitter (CSIT), which studies robust optimization by using lower bound expressions on the expected data rates. Extensive numerical results show that the proposed optimization algorithm can significantly improve the performance of fairness. It also provides reliable results for uplink communication with imperfect CSIT.

In recent research, significant attention has been devoted to the open-vocabulary object detection task, aiming to generalize beyond the limited number of classes labeled during training and detect objects described by arbitrary category names at inference. Compared with conventional object detection, open vocabulary object detection largely extends the object detection categories. However, it relies on calculating the similarity between image regions and a set of arbitrary category names with a pretrained vision-and-language model. This implies that, despite its open-set nature, the task still needs the predefined object categories during the inference stage. This raises the question: What if we do not have exact knowledge of object categories during inference? In this paper, we call such a new setting as generative open-ended object detection, which is a more general and practical problem. To address it, we formulate object detection as a generative problem and propose a simple framework named GenerateU, which can detect dense objects and generate their names in a free-form way. Particularly, we employ Deformable DETR as a region proposal generator with a language model translating visual regions to object names. To assess the free-form object detection task, we introduce an evaluation method designed to quantitatively measure the performance of generative outcomes. Extensive experiments demonstrate strong zero-shot detection performance of our GenerateU. For example, on the LVIS dataset, our GenerateU achieves comparable results to the open-vocabulary object detection method GLIP, even though the category names are not seen by GenerateU during inference. Code is available at: // github.com/FoundationVision/GenerateU .

This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators. We construct a new optimization scheme called relaxed approximate proximal point (RAPP), which is the first explicit method without anchoring to achieve last iterate convergence rates for $\rho$-comonotone problems while only requiring $\rho > -\tfrac{1}{2L}$. The construction extends to constrained and regularized settings. By replacing the inner optimizer in RAPP we rediscover the family of Lookahead algorithms for which we establish convergence in cohypomonotone problems even when the base optimizer is taken to be gradient descent ascent. The range of cohypomonotone problems in which Lookahead converges is further expanded by exploiting that Lookahead inherits the properties of the base optimizer. We corroborate the results with experiments on generative adversarial networks which demonstrates the benefits of the linear interpolation present in both RAPP and Lookahead.

The task of predicting multiple links within knowledge graphs (KGs) stands as a challenge in the field of knowledge graph analysis, a challenge increasingly resolvable due to advancements in natural language processing (NLP) and KG embedding techniques. This paper introduces a novel methodology, the Knowledge Graph Large Language Model Framework (KG-LLM), which leverages pivotal NLP paradigms, including chain-of-thought (CoT) prompting and in-context learning (ICL), to enhance multi-hop link prediction in KGs. By converting the KG to a CoT prompt, our framework is designed to discern and learn the latent representations of entities and their interrelations. To show the efficacy of the KG-LLM Framework, we fine-tune three leading Large Language Models (LLMs) within this framework, employing both non-ICL and ICL tasks for a comprehensive evaluation. Further, we explore the framework's potential to provide LLMs with zero-shot capabilities for handling previously unseen prompts. Our experimental findings discover that integrating ICL and CoT not only augments the performance of our approach but also significantly boosts the models' generalization capacity, thereby ensuring more precise predictions in unfamiliar scenarios.

This study proposes a multi-task pseudo-label learning (MPL)-based non-intrusive speech quality assessment model called MTQ-Net. MPL consists of two stages: obtaining pseudo-label scores from a pretrained model and performing multi-task learning. The 3QUEST metrics, namely Speech-MOS (S-MOS), Noise-MOS (N-MOS), and General-MOS (G-MOS), are the assessment targets. The pretrained MOSA-Net model is utilized to estimate three pseudo labels: perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and speech distortion index (SDI). Multi-task learning is then employed to train MTQ-Net by combining a supervised loss (derived from the difference between the estimated score and the ground-truth label) and a semi-supervised loss (derived from the difference between the estimated score and the pseudo label), where the Huber loss is employed as the loss function. Experimental results first demonstrate the advantages of MPL compared to training a model from scratch and using a direct knowledge transfer mechanism. Second, the benefit of the Huber loss for improving the predictive ability of MTQ-Net is verified. Finally, the MTQ-Net with the MPL approach exhibits higher overall predictive power compared to other SSL-based speech assessment models.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司