亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Molecular Dynamics (MD) simulation is a powerful tool for understanding the dynamics and structure of matter. Since the resolution of MD is atomic-scale, achieving long time-scale simulations with femtosecond integration is very expensive. In each MD step, numerous redundant computations are performed which can be learnt and avoided. These redundant computations can be surrogated and modeled by a deep learning model like a Graph Neural Network (GNN). In this work, we developed a GNN Accelerated Molecular Dynamics (GAMD) model that achieves fast and accurate force predictions and generates trajectories consistent with the classical MD simulations. Our results show that GAMD can accurately predict the dynamics of two typical molecular systems, Lennard-Jones (LJ) particles and Water (LJ+Electrostatics). GAMD's learning and inference are agnostic to the scale, where it can scale to much larger systems at test time. We also performed a comprehensive benchmark test comparing our implementation of GAMD to production-level MD softwares, where we showed GAMD is competitive with them on the large-scale simulation.

相關內容

While many existing graph neural networks (GNNs) have been proven to perform $\ell_2$-based graph smoothing that enforces smoothness globally, in this work we aim to further enhance the local smoothness adaptivity of GNNs via $\ell_1$-based graph smoothing. As a result, we introduce a family of GNNs (Elastic GNNs) based on $\ell_1$ and $\ell_2$-based graph smoothing. In particular, we propose a novel and general message passing scheme into GNNs. This message passing algorithm is not only friendly to back-propagation training but also achieves the desired smoothing properties with a theoretical convergence guarantee. Experiments on semi-supervised learning tasks demonstrate that the proposed Elastic GNNs obtain better adaptivity on benchmark datasets and are significantly robust to graph adversarial attacks. The implementation of Elastic GNNs is available at \url{//github.com/lxiaorui/ElasticGNN}.

Drug Discovery is a fundamental and ever-evolving field of research. The design of new candidate molecules requires large amounts of time and money, and computational methods are being increasingly employed to cut these costs. Machine learning methods are ideal for the design of large amounts of potential new candidate molecules, which are naturally represented as graphs. Graph generation is being revolutionized by deep learning methods, and molecular generation is one of its most promising applications. In this paper, we introduce a sequential molecular graph generator based on a set of graph neural network modules, which we call MG^2N^2. At each step, a node or a group of nodes is added to the graph, along with its connections. The modular architecture simplifies the training procedure, also allowing an independent retraining of a single module. Sequentiality and modularity make the generation process interpretable. The use of graph neural networks maximizes the information in input at each generative step, which consists of the subgraph produced during the previous steps. Experiments of unconditional generation on the QM9 and Zinc datasets show that our model is capable of generalizing molecular patterns seen during the training phase, without overfitting. The results indicate that our method is competitive, and outperforms challenging baselines for unconditional generation.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Despite the recent success of graph neural networks (GNN), common architectures often exhibit significant limitations, including sensitivity to oversmoothing, long-range dependencies, and spurious edges, e.g., as can occur as a result of graph heterophily or adversarial attacks. To at least partially address these issues within a simple transparent framework, we consider a new family of GNN layers designed to mimic and integrate the update rules of two classical iterative algorithms, namely, proximal gradient descent and iterative reweighted least squares (IRLS). The former defines an extensible base GNN architecture that is immune to oversmoothing while nonetheless capturing long-range dependencies by allowing arbitrary propagation steps. In contrast, the latter produces a novel attention mechanism that is explicitly anchored to an underlying end-toend energy function, contributing stability with respect to edge uncertainty. When combined we obtain an extremely simple yet robust model that we evaluate across disparate scenarios including standardized benchmarks, adversarially-perturbated graphs, graphs with heterophily, and graphs involving long-range dependencies. In doing so, we compare against SOTA GNN approaches that have been explicitly designed for the respective task, achieving competitive or superior node classification accuracy.

This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs). In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance. In addition, whereas existing methods are limited to equivariance on 3 dimensional spaces, our model is easily scaled to higher-dimensional spaces. We demonstrate the effectiveness of our method on dynamical systems modelling, representation learning in graph autoencoders and predicting molecular properties.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.

Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption. Unfortunately, there is an accuracy drop when replacing all convolution filters by adder filters. The main reason here is the optimization difficulty of ANNs using $\ell_1$-norm, in which the estimation of gradient in back propagation is inaccurate. In this paper, we present a novel method for further improving the performance of ANNs without increasing the trainable parameters via a progressive kernel based knowledge distillation (PKKD) method. A convolutional neural network (CNN) with the same architecture is simultaneously initialized and trained as a teacher network, features and weights of ANN and CNN will be transformed to a new space to eliminate the accuracy drop. The similarity is conducted in a higher-dimensional space to disentangle the difference of their distributions using a kernel based method. Finally, the desired ANN is learned based on the information from both the ground-truth and teacher, progressively. The effectiveness of the proposed method for learning ANN with higher performance is then well-verified on several benchmarks. For instance, the ANN-50 trained using the proposed PKKD method obtains a 76.8\% top-1 accuracy on ImageNet dataset, which is 0.6\% higher than that of the ResNet-50.

Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront. This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving. In absence of reliable domain expertise, one might resort to inferring the latent graph structure, which is often difficult due to the vast search space of possible graphs. Here we introduce Pointer Graph Networks (PGNs) which augment sets or graphs with additional inferred edges for improved model expressivity. PGNs allow each node to dynamically point to another node, followed by message passing over these pointers. The sparsity of this adaptable graph structure makes learning tractable while still being sufficiently expressive to simulate complex algorithms. Critically, the pointing mechanism is directly supervised to model long-term sequences of operations on classical data structures, incorporating useful structural inductive biases from theoretical computer science. Qualitatively, we demonstrate that PGNs can learn parallelisable variants of pointer-based data structures, namely disjoint set unions and link/cut trees. PGNs generalise out-of-distribution to 5x larger test inputs on dynamic graph connectivity tasks, outperforming unrestricted GNNs and Deep Sets.

Deep reinforcement learning (RL) has achieved many recent successes, yet experiment turn-around time remains a key bottleneck in research and in practice. We investigate how to optimize existing deep RL algorithms for modern computers, specifically for a combination of CPUs and GPUs. We confirm that both policy gradient and Q-value learning algorithms can be adapted to learn using many parallel simulator instances. We further find it possible to train using batch sizes considerably larger than are standard, without negatively affecting sample complexity or final performance. We leverage these facts to build a unified framework for parallelization that dramatically hastens experiments in both classes of algorithm. All neural network computations use GPUs, accelerating both data collection and training. Our results include using an entire DGX-1 to learn successful strategies in Atari games in mere minutes, using both synchronous and asynchronous algorithms.

北京阿比特科技有限公司