In this paper, we propose a web search retrieval approach which automatically detects recency sensitive queries and increases the freshness of the ordinary document ranking by a degree proportional to the probability of the need in recent content. We propose to solve the recency ranking problem by using result diversification principles and deal with the query's non-topical ambiguity appearing when the need in recent content can be detected only with uncertainty. Our offline and online experiments with millions of queries from real search engine users demonstrate the significant increase in satisfaction of users presented with a search result generated by our approach.
In this paper, we seek to learn a robot policy guaranteed to satisfy state constraints. To encourage constraint satisfaction, existing RL algorithms typically rely on Constrained Markov Decision Processes and discourage constraint violations through reward shaping. However, such soft constraints cannot offer verifiable safety guarantees. To address this gap, we propose POLICEd RL, a novel RL algorithm explicitly designed to enforce affine hard constraints in closed-loop with a black-box environment. Our key insight is to force the learned policy to be affine around the unsafe set and use this affine region as a repulsive buffer to prevent trajectories from violating the constraint. We prove that such policies exist and guarantee constraint satisfaction. Our proposed framework is applicable to both systems with continuous and discrete state and action spaces and is agnostic to the choice of the RL training algorithm. Our results demonstrate the capacity of POLICEd RL to enforce hard constraints in robotic tasks while significantly outperforming existing methods.
In this paper, we propose a novel video depth estimation approach, FutureDepth, which enables the model to implicitly leverage multi-frame and motion cues to improve depth estimation by making it learn to predict the future at training. More specifically, we propose a future prediction network, F-Net, which takes the features of multiple consecutive frames and is trained to predict multi-frame features one time step ahead iteratively. In this way, F-Net learns the underlying motion and correspondence information, and we incorporate its features into the depth decoding process. Additionally, to enrich the learning of multiframe correspondence cues, we further leverage a reconstruction network, R-Net, which is trained via adaptively masked auto-encoding of multiframe feature volumes. At inference time, both F-Net and R-Net are used to produce queries to work with the depth decoder, as well as a final refinement network. Through extensive experiments on several benchmarks, i.e., NYUDv2, KITTI, DDAD, and Sintel, which cover indoor, driving, and open-domain scenarios, we show that FutureDepth significantly improves upon baseline models, outperforms existing video depth estimation methods, and sets new state-of-the-art (SOTA) accuracy. Furthermore, FutureDepth is more efficient than existing SOTA video depth estimation models and has similar latencies when comparing to monocular models
In this paper, we address unsupervised domain adaptation under noisy environments, which is more challenging and practical than traditional domain adaptation. In this scenario, the model is prone to overfitting noisy labels, resulting in a more pronounced domain shift and a notable decline in the overall model performance. Previous methods employed prototype methods for domain adaptation on robust feature spaces. However, these approaches struggle to effectively classify classes with similar features under noisy environments. To address this issue, we propose a new method to detect and correct confusing class pair. We first divide classes into easy and hard classes based on the small loss criterion. We then leverage the top-2 predictions for each sample after aligning the source and target domain to find the confusing pair in the hard classes. We apply label correction to the noisy samples within the confusing pair. With the proposed label correction method, we can train our model with more accurate labels. Extensive experiments confirm the effectiveness of our method and demonstrate its favorable performance compared with existing state-of-the-art methods. Our codes are publicly available at //github.com/Hehxcf/CPC/.
In this paper, we study the problem of watermarking large language models (LLMs). We consider the trade-off between model distortion and detection ability and formulate it as a constrained optimization problem based on the green-red algorithm of Kirchenbauer et al. (2023a). We show that the optimal solution to the optimization problem enjoys a nice analytical property which provides a better understanding and inspires the algorithm design for the watermarking process. We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its asymptotic Pareto optimality between model distortion and detection ability. Such a result guarantees an averaged increased green list probability and henceforth detection ability explicitly (in contrast to previous results). Moreover, we provide a systematic discussion on the choice of the model distortion metrics for the watermarking problem. We justify our choice of KL divergence and present issues with the existing criteria of ``distortion-free'' and perplexity. Finally, we empirically evaluate our algorithms on extensive datasets against benchmark algorithms.
In this paper, we concentrate on decentralized optimization problems with nonconvex and nonsmooth objective functions, especially on the decentralized training of nonsmooth neural networks. We introduce a unified framework, named DSM, to analyze the global convergence of decentralized stochastic subgradient methods. We prove the global convergence of our proposed framework under mild conditions, by establishing that the generated sequence asymptotically approximates the trajectories of its associated differential inclusion. Furthermore, we establish that our proposed framework encompasses a wide range of existing efficient decentralized subgradient methods, including decentralized stochastic subgradient descent (DSGD), DSGD with gradient-tracking technique (DSGD-T), and DSGD with momentum (DSGDm). In addition, we introduce SignSGD employing the sign map to regularize the update directions in DSGDm, and show it is enclosed in our proposed framework. Consequently, our convergence results establish, for the first time, global convergence of these methods when applied to nonsmooth nonconvex objectives. Preliminary numerical experiments demonstrate that our proposed framework yields highly efficient decentralized subgradient methods with convergence guarantees in the training of nonsmooth neural networks.
Motivated by the growing interest in correlation-robust stochastic optimization, we investigate stochastic selection problems beyond independence. Specifically, we consider the instructive case of pairwise-independent priors and matroid constraints. We obtain essentially-optimal bounds for contention resolution and prophet inequalities. The impetus for our work comes from the recent work of Caragiannis et al., who derived a constant-approximation for the single-choice prophet inequality with pairwise-independent priors. For general matroids, our results are tight and largely negative. For both contention resolution and prophet inequalities, our impossibility results hold for the full linear matroid over a finite field. We explicitly construct pairwise-independent distributions which rule out an omega(1/Rank)-balanced offline CRS and an omega(1/log Rank)-competitive prophet inequality against the (usual) oblivious adversary. For both results, we employ a generic approach for constructing pairwise-independent random vectors -- one which unifies and generalizes existing pairwise-independence constructions from the literature on universal hash functions and pseudorandomness. Specifically, our approach is based on our observation that random linear maps turn linear independence into stochastic independence. We then examine the class of matroids which satisfy the so-called partition property -- these include most common matroids encountered in optimization. We obtain positive results for both online contention resolution and prophet inequalities with pairwise-independent priors on such matroids, approximately matching the corresponding guarantees for fully independent priors. These algorithmic results hold against the almighty adversary for both problems.
Recent work by Bravyi, Gosset, and Koenig showed that there exists a search problem that a constant-depth quantum circuit can solve, but that any constant-depth classical circuit with bounded fan-in cannot. They also pose the question: Can we achieve a similar proof of separation for an input-independent sampling task? In this paper, we show that the answer to this question is yes when the number of random input bits given to the classical circuit is bounded. We introduce a distribution $D_{n}$ over $\{0,1\}^n$ and construct a constant-depth uniform quantum circuit family $\{C_n\}_n$ such that $C_n$ samples from a distribution close to $D_{n}$ in total variation distance. For any $\delta < 1$ we also prove, unconditionally, that any classical circuit with bounded fan-in gates that takes as input $kn + n^\delta$ i.i.d. Bernouli random variables with entropy $1/k$ and produces output close to $D_{n}$ in total variation distance has depth $\Omega(\log \log n)$. This gives an unconditional proof that constant-depth quantum circuits can sample from distributions that can't be reproduced by constant-depth bounded fan-in classical circuits, even up to additive error. We also show a similar separation between constant-depth quantum circuits with advice and classical circuits with bounded fan-in and fan-out, but access to an unbounded number of i.i.d random inputs. The distribution $D_n$ and classical circuit lower bounds are inspired by work of Viola, in which he shows a different (but related) distribution cannot be sampled from approximately by constant-depth bounded fan-in classical circuits.
In this note we highlight some connections of UMAP to the basic principles of Information Geometry. Originally, UMAP was derived from Category Theory observations. However, we posit that it also has a natural geometric interpretation.
In this paper, we propose a complexity measure for exchangeable graphs by considering the graph-generating mechanism. Exchangeability for graphs implies distributional invariance under node permutations, making it a suitable default model for a wide range of graph data. For this well-studied class of graphs, we quantify complexity using graphon entropy. Graphon entropy is a graph property, meaning it is invariant under graph isomorphisms. Therefore, we focus on estimating the entropy of the generating mechanism for a graph realization, rather than selecting a specific graph feature. This approach allows us to consider the global properties of a graph, capturing its important graph-theoretic and topological characteristics, such as sparsity, symmetry, and connectedness. We introduce a consistent graphon entropy estimator that achieves the nonparametric rate for any arbitrary exchangeable graph with a smooth graphon representative. Additionally, we develop tailored entropy estimators for situations where more information about the underlying graphon is available, specifically for widely studied random graph models such as Erd\H{o}s-R\'enyi, Configuration Model and Stochastic Block Model. We determine their large-sample properties by providing a Central Limit Theorem for the first two, and a convergence rate for the third model. We also conduct a simulation study to illustrate our theoretical findings and demonstrate the connection between graphon entropy and graph structure. Finally, we investigate the role of our entropy estimator as a complexity measure for characterizing real-world graphs.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.