亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional adversarial examples are typically generated by adding perturbation noise to the input image within a small matrix norm. In practice, un-restricted adversarial attack has raised great concern and presented a new threat to the AI safety. In this paper, we propose a wavelet-VAE structure to reconstruct an input image and generate adversarial examples by modifying the latent code. Different from perturbation-based attack, the modifications of the proposed method are not limited but imperceptible to human eyes. Experiments show that our method can generate high quality adversarial examples on ImageNet dataset.

相關內容

Applications of machine learning (ML) models and convolutional neural networks (CNNs) have been rapidly increased. Although state-of-the-art CNNs provide high accuracy in many applications, recent investigations show that such networks are highly vulnerable to adversarial attacks. The black-box adversarial attack is one type of attack that the attacker does not have any knowledge about the model or the training dataset, but it has some input data set and their labels. In this paper, we propose a novel approach to generate a black-box attack in sparse domain whereas the most important information of an image can be observed. Our investigation shows that large sparse (LaS) components play a critical role in the performance of image classifiers. Under this presumption, to generate adversarial example, we transfer an image into a sparse domain and put a threshold to choose only k LaS components. In contrast to the very recent works that randomly perturb k low frequency (LoF) components, we perturb k LaS components either randomly (query-based) or in the direction of the most correlated sparse signal from a different class. We show that LaS components contain some middle or higher frequency components information which leads fooling image classifiers with a fewer number of queries. We demonstrate the effectiveness of this approach by fooling six state-of-the-art image classifiers, the TensorFlow Lite (TFLite) model of Google Cloud Vision platform, and YOLOv5 model as an object detection algorithm. Mean squared error (MSE) and peak signal to noise ratio (PSNR) are used as quality metrics. We also present a theoretical proof to connect these metrics to the level of perturbation in the sparse domain.

Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations. Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs). This observation also holds for certified robustness. We summarize the following main observations contributing to the improved robustness of ViTs: 1) Features learned by ViTs contain less low-level information and are more generalizable, which contributes to superior robustness against adversarial perturbations. 2) Introducing convolutional or tokens-to-token blocks for learning low-level features in ViTs can improve classification accuracy but at the cost of adversarial robustness. 3) Increasing the proportion of transformers in the model structure (when the model consists of both transformer and CNN blocks) leads to better robustness. But for a pure transformer model, simply increasing the size or adding layers cannot guarantee a similar effect. 4) Pre-training on larger datasets does not significantly improve adversarial robustness though it is critical for training ViTs. 5) Adversarial training is also applicable to ViT for training robust models. Furthermore, feature visualization and frequency analysis are conducted for explanation. The results show that ViTs are less sensitive to high-frequency perturbations than CNNs and there is a high correlation between how well the model learns low-level features and its robustness against different frequency-based perturbations.

It has been observed that Deep Neural Networks (DNNs) are vulnerable to transfer attacks in the query-free black-box setting. However, all the previous studies on transfer attack assume that the white-box surrogate models possessed by the attacker and the black-box victim models are trained on the same dataset, which means the attacker implicitly knows the label set and the input size of the victim model. However, this assumption is usually unrealistic as the attacker may not know the dataset used by the victim model, and further, the attacker needs to attack any randomly encountered images that may not come from the same dataset. Therefore, in this paper we define a new Generalized Transferable Attack (GTA) problem where we assume the attacker has a set of surrogate models trained on different datasets (with different label sets and image sizes), and none of them is equal to the dataset used by the victim model. We then propose a novel method called Image Classification Eraser (ICE) to erase classification information for any encountered images from arbitrary dataset. Extensive experiments on Cifar-10, Cifar-100, and TieredImageNet demonstrate the effectiveness of the proposed ICE on the GTA problem. Furthermore, we show that existing transfer attack methods can be modified to tackle the GTA problem, but with significantly worse performance compared with ICE.

Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for constraining the generated instances. As a result, it remains challenging to use vanilla adversarial training to improve NLP models' performance, and the benefits are mainly uninvestigated. This paper proposes a simple and improved vanilla adversarial training process for NLP models, which we name Attacking to Training (A2T). The core part of A2T is a new and cheaper word substitution attack optimized for vanilla adversarial training. We use A2T to train BERT and RoBERTa models on IMDB, Rotten Tomatoes, Yelp, and SNLI datasets. Our results empirically show that it is possible to train robust NLP models using a much cheaper adversary. We demonstrate that vanilla adversarial training with A2T can improve an NLP model's robustness to the attack it was originally trained with and also defend the model against other types of word substitution attacks. Furthermore, we show that A2T can improve NLP models' standard accuracy, cross-domain generalization, and interpretability. Code is available at //github.com/QData/Textattack-A2T .

In S&P '21, Jia et al. proposed a new concept/mechanism named proof-of-learning (PoL), which allows a prover to demonstrate ownership of a machine learning model by proving integrity of the training procedure. It guarantees that an adversary cannot construct a valid proof with less cost (in both computation and storage) than that made by the prover in generating the proof. A PoL proof includes a set of intermediate models recorded during training, together with the corresponding data points used to obtain each recorded model. Jia et al. claimed that an adversary merely knowing the final model and training dataset cannot efficiently find a set of intermediate models with correct data points. In this paper, however, we show that PoL is vulnerable to "adversarial examples"! Specifically, in a similar way as optimizing an adversarial example, we could make an arbitrarily-chosen data point "generate" a given model, hence efficiently generating intermediate models with correct data points. We demonstrate, both theoretically and empirically, that we are able to generate a valid proof with significantly less cost than generating a proof by the prover, thereby we successfully break PoL.

Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at //github.com/tensorflow/tpu/tree/master/models/official/efficientnet.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularisation during training to shape the distribution of the encoded data in latent space. We suggest denoising adversarial autoencoders, which combine denoising and regularisation, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of adversarial autoencoders. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance, and can synthesise samples that are more consistent with the input data than those trained without a corruption process.

北京阿比特科技有限公司