亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning is a popular distributed learning approach for training a machine learning model without disclosing raw data. It consists of a parameter server and a possibly large collection of clients (e.g., in cross-device federated learning) that may operate in congested and changing environments. In this paper, we study federated learning in the presence of stochastic and dynamic communication failures wherein the uplink between the parameter server and client $i$ is on with unknown probability $p_i^t$ in round $t$. Furthermore, we allow the dynamics of $p_i^t$ to be arbitrary. We first demonstrate that when the $p_i^t$'s vary across clients, the most widely adopted federated learning algorithm, Federated Average (FedAvg), experiences significant bias. To address this observation, we propose Federated Postponed Broadcast (FedPBC), a simple variant of FedAvg. FedPBC differs from FedAvg in that the parameter server postpones broadcasting the global model till the end of each round. Despite uplink failures, we show that FedPBC converges to a stationary point of the original non-convex objective. On the technical front, postponing the global model broadcasts enables implicit gossiping among the clients with active links in round $t$. Despite the time-varying nature of $p_i^t$, we can bound the perturbation of the global model dynamics using techniques to control gossip-type information mixing errors. Extensive experiments have been conducted on real-world datasets over diversified unreliable uplink patterns to corroborate our analysis.

相關內容

The biased net paradigm was the first general and empirically tractable scheme for parameterizing complex patterns of dependence in networks, expressing deviations from uniform random graph structure in terms of latent ``bias events,'' whose realizations enhance reciprocity, transitivity, or other structural features. Subsequent developments have introduced local specifications of biased nets, which reduce the need for approximations required in early specifications based on tracing processes. Here, we show that while one such specification leads to inconsistencies, a closely related Markovian specification both evades these difficulties and can be extended to incorporate new types of effects. We introduce the notion of inhibitory bias events, with satiation as an example, which are useful for avoiding degeneracies that can arise from closure bias terms. Although our approach does not lead to a computable likelihood, we provide a strategy for approximate Bayesian inference using random forest prevision. We demonstrate our approach on a network of friendship ties among college students, recapitulating a relationship between the sibling bias and tie strength posited in earlier work by Fararo.

Annotated datasets are an essential ingredient to train, evaluate, compare and productionalize supervised machine learning models. It is therefore imperative that annotations are of high quality. For their creation, good quality management and thereby reliable quality estimates are needed. Then, if quality is insufficient during the annotation process, rectifying measures can be taken to improve it. Quality estimation is often performed by having experts manually label instances as correct or incorrect. But checking all annotated instances tends to be expensive. Therefore, in practice, usually only subsets are inspected; sizes are chosen mostly without justification or regard to statistical power and more often than not, are relatively small. Basing estimates on small sample sizes, however, can lead to imprecise values for the error rate. Using unnecessarily large sample sizes costs money that could be better spent, for instance on more annotations. Therefore, we first describe in detail how to use confidence intervals for finding the minimal sample size needed to estimate the annotation error rate. Then, we propose applying acceptance sampling as an alternative to error rate estimation We show that acceptance sampling can reduce the required sample sizes up to 50% while providing the same statistical guarantees.

It is important for researchers to understand precisely how data scientists turn raw data into insights, including typical programming patterns, workflow, and methodology. This paper contributes a novel system, called DataInquirer, that tracks incremental code executions in Jupyter notebooks (a type of computational notebook). The system allows us to quantitatively measure timing, workflow, and operation frequency in data science tasks without resorting to human annotation or interview. In a series of pilot studies, we collect 97 traces, logging data scientist activities across four studies. While this paper presents a general system and data analysis approach, we focus on a foundational sub-question in our pilot studies: How consistent are different data scientists in analyzing the same data? We taxonomize variation between data scientists on the same dataset according to three categories: semantic, syntactic, and methodological. Our results suggest that there are statistically significant differences in the conclusions reached by different data scientists on the same task and present quantitative evidence for this phenomenon. Furthermore, our results suggest that AI-powered code tools subtly influence these results, allowing student participants to generate workflows that more resemble expert data practitioners.

Federated learning (FL) is a popular privacy-preserving paradigm that enables distributed clients to collaboratively train models with a central server while keeping raw data locally. In practice, distinct model architectures, varying data distributions, and limited resources across local clients inevitably cause model performance degradation and a slowdown in convergence speed. However, existing FL methods can only solve some of the above heterogeneous challenges and have obvious performance limitations. Notably, a unified framework has not yet been explored to overcome these challenges. Accordingly, we propose FedHPL, a parameter-efficient unified $\textbf{Fed}$erated learning framework for $\textbf{H}$eterogeneous settings based on $\textbf{P}$rompt tuning and $\textbf{L}$ogit distillation. Specifically, we employ a local prompt tuning scheme that leverages a few learnable visual prompts to efficiently fine-tune the frozen pre-trained foundation model for downstream tasks, thereby accelerating training and improving model performance under limited local resources and data heterogeneity. Moreover, we design a global logit distillation scheme to handle the model heterogeneity and guide the local training. In detail, we leverage logits to implicitly capture local knowledge and design a weighted knowledge aggregation mechanism to generate global client-specific logits. We provide a theoretical guarantee on the generalization error bound for FedHPL. The experiments on various benchmark datasets under diverse settings of models and data demonstrate that our framework outperforms state-of-the-art FL approaches, with less computation overhead and training rounds.

Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.

Machine unlearning is a promising paradigm for removing unwanted data samples from a trained model, towards ensuring compliance with privacy regulations and limiting harmful biases. Although unlearning has been shown in, e.g., classification and recommendation systems, its potential in medical image-to-image translation, specifically in image recon-struction, has not been thoroughly investigated. This paper shows that machine unlearning is possible in MRI tasks and has the potential to benefit for bias removal. We set up a protocol to study how much shared knowledge exists between datasets of different organs, allowing us to effectively quantify the effect of unlearning. Our study reveals that combining training data can lead to hallucinations and reduced image quality in the reconstructed data. We use unlearning to remove hallucinations as a proxy exemplar of undesired data removal. Indeed, we show that machine unlearning is possible without full retraining. Furthermore, our observations indicate that maintaining high performance is feasible even when using only a subset of retain data. We have made our code publicly accessible.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

北京阿比特科技有限公司