亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Domain shift degrades the performance of object detection models in practical applications. To alleviate the influence of domain shift, plenty of previous work try to decouple and learn the domain-invariant (common) features from source domains via domain adversarial learning (DAL). However, inspired by causal mechanisms, we find that previous methods ignore the implicit insignificant non-causal factors hidden in the common features. This is mainly due to the single-view nature of DAL. In this work, we present an idea to remove non-causal factors from common features by multi-view adversarial training on source domains, because we observe that such insignificant non-causal factors may still be significant in other latent spaces (views) due to the multi-mode structure of data. To summarize, we propose a Multi-view Adversarial Discriminator (MAD) based domain generalization model, consisting of a Spurious Correlations Generator (SCG) that increases the diversity of source domain by random augmentation and a Multi-View Domain Classifier (MVDC) that maps features to multiple latent spaces, such that the non-causal factors are removed and the domain-invariant features are purified. Extensive experiments on six benchmarks show our MAD obtains state-of-the-art performance.

相關內容

Deep learning in computer vision has achieved great success with the price of large-scale labeled training data. However, exhaustive data annotation is impracticable for each task of all domains of interest, due to high labor costs and unguaranteed labeling accuracy. Besides, the uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist. All these nuisances may hinder the verification of typical theories and exposure to new findings. To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization. We in this work push forward along this line by doing profound and extensive research on bare supervised learning and downstream domain adaptation. Specifically, under the well-controlled, IID data setting enabled by 3D rendering, we systematically verify the typical, important learning insights, e.g., shortcut learning, and discover the new laws of various data regimes and network architectures in generalization. We further investigate the effect of image formation factors on generalization, e.g., object scale, material texture, illumination, camera viewpoint, and background in a 3D scene. Moreover, we use the simulation-to-reality adaptation as a downstream task for comparing the transferability between synthetic and real data when used for pre-training, which demonstrates that synthetic data pre-training is also promising to improve real test results. Lastly, to promote future research, we develop a new large-scale synthetic-to-real benchmark for image classification, termed S2RDA, which provides more significant challenges for transfer from simulation to reality. The code and datasets are available at //github.com/huitangtang/On_the_Utility_of_Synthetic_Data.

In recent years, deep learning has been successfully applied in various scientific domains. Following these promising results and performances, it has recently also started being evaluated in the domain of radio astronomy. In particular, since radio astronomy is entering the Big Data era, with the advent of the largest telescope in the world - the Square Kilometre Array (SKA), the task of automatic object detection and instance segmentation is crucial for source finding and analysis. In this work, we explore the performance of the most affirmed deep learning approaches, applied to astronomical images obtained by radio interferometric instrumentation, to solve the task of automatic source detection. This is carried out by applying models designed to accomplish two different kinds of tasks: object detection and semantic segmentation. The goal is to provide an overview of existing techniques, in terms of prediction performance and computational efficiency, to scientists in the astrophysics community who would like to employ machine learning in their research.

The research in Deep Learning applications in sound and music computing have gathered an interest in the recent years; however, there is still a missing link between these new technologies and on how they can be incorporated into real-world artistic practices. In this work, we explore a well-known Deep Learning architecture called Variational Autoencoders (VAEs). These architectures have been used in many areas for generating latent spaces where data points are organized so that similar data points locate closer to each other. Previously, VAEs have been used for generating latent timbre spaces or latent spaces of symbolic music excepts. Applying VAE to audio features of timbre requires a vocoder to transform the timbre generated by the network to an audio signal, which is computationally expensive. In this work, we apply VAEs to raw audio data directly while bypassing audio feature extraction. This approach allows the practitioners to use any audio recording while giving flexibility and control over the aesthetics through dataset curation. The lower computation time in audio signal generation allows the raw audio approach to be incorporated into real-time applications. In this work, we propose three strategies to explore latent spaces of audio and timbre for sound design applications. By doing so, our aim is to initiate a conversation on artistic approaches and strategies to utilize latent audio spaces in sound and music practices.

Training generative adversarial networks (GANs) with limited data is challenging because discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency of training GANs. However, the augmentation implicitly introduces undesired invariance to augmentation for the discriminator since it ignores the change of semantics in the label space caused by data transformation, which may limit the representation learning ability of the discriminator and ultimately affect the generative modeling performance of the generator. To mitigate the negative impact of invariance while inheriting the benefits of data augmentation, we propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data. Particularly, the prediction targets of real data and generated data are required to be distinguished since they are different during training. We further encourage the generator to adversarially learn from the self-supervised discriminator by generating augmentation-predictable real but not fake data. This formulation connects the learning objective of the generator and the arithmetic$-$harmonic mean divergence under certain assumptions. We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures on data-limited CIFAR-10, CIFAR-100, FFHQ, LSUN-Cat, and five low-shot datasets. Experimental results demonstrate significant improvements of our method over SOTA methods in training data-efficient GANs.

Large language models are able to learn new tasks in context, where they are provided with instructions and a few annotated examples. However, the effectiveness of in-context learning is dependent to the provided context, and the performance on a downstream task can vary a lot depending on the instruction. Importantly, such dependency on the context can happen in unpredictable ways, e.g., a seemingly more informative instruction might lead to a worse performance. In this paper, we propose an alternative approach, which we term in-context probing. Similar to in-context learning, we contextualize the representation of the input with an instruction, but instead of decoding the output prediction, we probe the contextualized representation to predict the label. Through a series of experiments on a diverse set of classification tasks, we show that in-context probing is significantly more robust to changes in instructions. We further show that probing can be particularly helpful to build classifiers on top of smaller models, and with only a hundred training examples.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司