亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

New regulations and increased awareness of data privacy have led to the deployment of new and more efficient differentially private mechanisms across public institutions and industries. Ensuring the correctness of these mechanisms is therefore crucial to ensure the proper protection of data. However, since differential privacy is a property of the mechanism itself, and not of an individual output, testing whether a mechanism is differentially private is not a trivial task. While ad hoc testing techniques exist under specific assumptions, no concerted effort has been made by the research community to develop a flexible and extendable tool for testing differentially private mechanisms. This paper introduces DP-Auditorium as a step advancing research in this direction. DP-Auditorium abstracts the problem of testing differential privacy into two steps: (1) measuring the distance between distributions, and (2) finding neighboring datasets where a mechanism generates output distributions maximizing such distance. From a technical point of view, we propose three new algorithms for evaluating the distance between distributions. While these algorithms are well-established in the statistics community, we provide new estimation guarantees that exploit the fact that we are only interested in verifying whether a mechanism is differentially private, and not in obtaining an exact estimate of the distance between two distributions. DP-Auditorium is easily extensible, as demonstrated in this paper by implementing a well-known approximate differential privacy testing algorithm into our library. We provide an extensive comparison to date of multiple testers across varying sample sizes and differential privacy parameters, demonstrating that there is no single tester that dominates all others, and that a combination of different techniques is required to ensure proper testing of mechanisms.

相關內容

Current validation methods often rely on recorded data and basic functional checks, which may not be sufficient to encompass the scenarios an autonomous vehicle might encounter. In addition, there is a growing need for complex scenarios with changing vehicle interactions for comprehensive validation. This work introduces a novel synchronous multi-agent simulation framework for autonomous vehicles in interactive scenarios. Our approach creates an interactive scenario and incorporates publicly available edge-case scenarios wherein simulated vehicles are replaced by agents navigating to predefined destinations. We provide a platform that enables the integration of different autonomous driving planning methodologies and includes a set of evaluation metrics to assess autonomous driving behavior. Our study explores different planning setups and adjusts simulation complexity to test the framework's adaptability and performance. Results highlight the critical role of simulating vehicle interactions to enhance autonomous driving systems. Our setup offers unique insights for developing advanced algorithms for complex driving tasks to accelerate future investigations and developments in this field. The multi-agent simulation framework is available as open-source software: //github.com/TUM-AVS/Frenetix-Motion-Planner

The ubiquitous missing values cause the multivariate time series data to be partially observed, destroying the integrity of time series and hindering the effective time series data analysis. Recently deep learning imputation methods have demonstrated remarkable success in elevating the quality of corrupted time series data, subsequently enhancing performance in downstream tasks. In this paper, we conduct a comprehensive survey on the recently proposed deep learning imputation methods. First, we propose a taxonomy for the reviewed methods, and then provide a structured review of these methods by highlighting their strengths and limitations. We also conduct empirical experiments to study different methods and compare their enhancement for downstream tasks. Finally, the open issues for future research on multivariate time series imputation are pointed out. All code and configurations of this work, including a regularly maintained multivariate time series imputation paper list, can be found in the GitHub repository~\url{//github.com/WenjieDu/Awesome\_Imputation}.

Linear feature extraction at the presence of nonlinear dependencies among the data is a fundamental challenge in unsupervised learning. We propose using a probabilistic Gram-Schmidt (GS) type orthogonalization process in order to detect and map out redundant dimensions. Specifically, by applying the GS process over a family of functions which presumably captures the nonlinear dependencies in the data, we construct a series of covariance matrices that can either be used to identify new large-variance directions, or to remove those dependencies from the principal components. In the former case, we provide information-theoretic guarantees in terms of entropy reduction. In the latter, we prove that under certain assumptions the resulting algorithms detect and remove nonlinear dependencies whenever those dependencies lie in the linear span of the chosen function family. Both proposed methods extract linear features from the data while removing nonlinear redundancies. We provide simulation results on synthetic and real-world datasets which show improved performance over PCA and state-of-the-art linear feature extraction algorithms, both in terms of variance maximization of the extracted features, and in terms of improved performance of classification algorithms. Additionally, our methods are comparable and often outperform the non-linear method of kernel PCA.

Privacy-preserving neural networks have attracted increasing attention in recent years, and various algorithms have been developed to keep the balance between accuracy, computational complexity and information security from the cryptographic view. This work takes a different view from the input data and structure of neural networks. We decompose the input data (e.g., some images) into sensitive and insensitive segments according to importance and privacy. The sensitive segment includes some important and private information such as human faces and we take strong homomorphic encryption to keep security, whereas the insensitive one contains some background and we add perturbations. We propose the bi-CryptoNets, i.e., plaintext and ciphertext branches, to deal with two segments, respectively, and ciphertext branch could utilize the information from plaintext branch by unidirectional connections. We adopt knowledge distillation for our bi-CryptoNets by transferring representations from a well-trained teacher neural network. Empirical studies show the effectiveness and decrease of inference latency for our bi-CryptoNets.

The omnipresence of NP-hard combinatorial optimization problems (COPs) compels domain experts to engage in trial-and-error heuristic design process. The long-standing endeavor of design automation has gained new momentum with the rise of large language models (LLMs). This paper introduces Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces. To empower LHHs, we present Reflective Evolution (ReEvo), a generic searching framework that emulates the reflective design approach of human experts while far surpassing human capabilities with its scalable LLM inference, Internet-scale domain knowledge, and powerful evolutionary search. Evaluations across 12 COP settings show that 1) verbal reflections for evolution lead to smoother fitness landscapes, explicit inference of black-box COP settings, and better search results; 2) heuristics generated by ReEvo in minutes can outperform state-of-the-art human designs and neural solvers; 3) LHHs enable efficient algorithm design automation even when challenged with black-box COPs, demonstrating its potential for complex and novel real-world applications. Our code is available: //github.com/ai4co/LLM-as-HH.

Leading models for the text-to-SQL task heavily rely on proprietary Large Language Models (LLMs), posing concerns over data privacy. Closing the performance gap between small open-source models and large proprietary models is crucial to mitigate this reliance. To this end, we introduce a novel two-stage fine-tuning approach that decomposes the task into two simpler tasks. Through comprehensive evaluation on two large cross-domain datasets and two small LLMs, we show that this approach improves execution accuracy by 3 to 7 percent, effectively aligning the performance of open-source models with their proprietary counterparts.

We introduce SuperCLUE-Math6(SC-Math6), a new benchmark dataset to evaluate the mathematical reasoning abilities of Chinese language models. SC-Math6 is designed as an upgraded Chinese version of the GSM8K dataset with enhanced difficulty, diversity, and application scope. It consists of over 2000 mathematical word problems requiring multi-step reasoning and providing natural language solutions. We propose an innovative scheme to quantify the reasoning capability of large models based on performance over problems with different reasoning steps. Experiments on 13 representative Chinese models demonstrate a clear stratification of reasoning levels, with top models like GPT-4 showing superior performance. SC-Math6 fills the gap in Chinese mathematical reasoning benchmarks and provides a comprehensive testbed to advance the intelligence of Chinese language models.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司