亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perceptual image restoration seeks for high-fidelity images that most likely degrade to given images. For better visual quality, previous work proposed to search for solutions within the natural image manifold, by exploiting the latent space of a generative model. However, the quality of generated images are only guaranteed when latent embedding lies close to the prior distribution. In this work, we propose to restrict the feasible region within the prior manifold. This is accomplished with a non-parametric metric for two distributions: the Maximum Mean Discrepancy (MMD). Moreover, we model the degradation process directly as a conditional distribution. We show that our model performs well in measuring the similarity between restored and degraded images. Instead of optimizing the long criticized pixel-wise distance over degraded images, we rely on such model to find visual pleasing images with high probability. Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types. The experimental results on perceptual quality and no-reference image quality assessment (NR-IQA) demonstrate the superior performance of our method.

相關內容

The deep-learning-based image restoration and fusion methods have achieved remarkable results. However, the existing restoration and fusion methods paid little research attention to the robustness problem caused by dynamic degradation. In this paper, we propose a novel dynamic image restoration and fusion neural network, termed as DDRF-Net, which is capable of solving two problems, i.e., static restoration and fusion, dynamic degradation. In order to solve the static fusion problem of existing methods, dynamic convolution is introduced to learn dynamic restoration and fusion weights. In addition, a dynamic degradation kernel is proposed to improve the robustness of image restoration and fusion. Our network framework can effectively combine image degradation with image fusion tasks, provide more detailed information for image fusion tasks through image restoration loss, and optimize image restoration tasks through image fusion loss. Therefore, the stumbling blocks of deep learning in image fusion, e.g., static fusion weight and specifically designed network architecture, are greatly mitigated. Extensive experiments show that our method is more superior compared with the state-of-the-art methods.

Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages rich and diverse priors encapsulated in a pretrained face GAN for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.

Recently, label consistent k-svd(LC-KSVD) algorithm has been successfully applied in image classification. The objective function of LC-KSVD is consisted of reconstruction error, classification error and discriminative sparse codes error with l0-norm sparse regularization term. The l0-norm, however, leads to NP-hard issue. Despite some methods such as orthogonal matching pursuit can help solve this problem to some extent, it is quite difficult to find the optimum sparse solution. To overcome this limitation, we propose a label embedded dictionary learning(LEDL) method to utilise the $\ell_1$-norm as the sparse regularization term so that we can avoid the hard-to-optimize problem by solving the convex optimization problem. Alternating direction method of multipliers and blockwise coordinate descent algorithm are then used to optimize the corresponding objective function. Extensive experimental results on six benchmark datasets illustrate that the proposed algorithm has achieved superior performance compared to some conventional classification algorithms.

Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick", allowing fine control over the trade-off between sample fidelity and variety by truncating the latent space. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.3 and Frechet Inception Distance (FID) of 9.6, improving over the previous best IS of 52.52 and FID of 18.65.

Generating stylized captions for an image is an emerging topic in image captioning. Given an image as input, it requires the system to generate a caption that has a specific style (e.g., humorous, romantic, positive, and negative) while describing the image content semantically accurately. In this paper, we propose a novel stylized image captioning model that effectively takes both requirements into consideration. To this end, we first devise a new variant of LSTM, named style-factual LSTM, as the building block of our model. It uses two groups of matrices to capture the factual and stylized knowledge, respectively, and automatically learns the word-level weights of the two groups based on previous context. In addition, when we train the model to capture stylized elements, we propose an adaptive learning approach based on a reference factual model, it provides factual knowledge to the model as the model learns from stylized caption labels, and can adaptively compute how much information to supply at each time step. We evaluate our model on two stylized image captioning datasets, which contain humorous/romantic captions and positive/negative captions, respectively. Experiments shows that our proposed model outperforms the state-of-the-art approaches, without using extra ground truth supervision.

We apply basic statistical reasoning to signal reconstruction by machine learning -- learning to map corrupted observations to clean signals -- with a simple and powerful conclusion: under certain common circumstances, it is possible to learn to restore signals without ever observing clean ones, at performance close or equal to training using clean exemplars. We show applications in photographic noise removal, denoising of synthetic Monte Carlo images, and reconstruction of MRI scans from undersampled inputs, all based on only observing corrupted data.

Despite of the success of Generative Adversarial Networks (GANs) for image generation tasks, the trade-off between image diversity and visual quality are an well-known issue. Conventional techniques achieve either visual quality or image diversity; the improvement in one side is often the result of sacrificing the degradation in the other side. In this paper, we aim to achieve both simultaneously by improving the stability of training GANs. A key idea of the proposed approach is to implicitly regularizing the discriminator using a representative feature. For that, this representative feature is extracted from the data distribution, and then transferred to the discriminator for enforcing slow updates of the gradient. Consequently, the entire training process is stabilized because the learning curve of discriminator varies slowly. Based on extensive evaluation, we demonstrate that our approach improves the visual quality and diversity of state-of-the art GANs.

We propose an Active Learning approach to image segmentation that exploits geometric priors to streamline the annotation process. We demonstrate this for both background-foreground and multi-class segmentation tasks in 2D images and 3D image volumes. Our approach combines geometric smoothness priors in the image space with more traditional uncertainty measures to estimate which pixels or voxels are most in need of annotation. For multi-class settings, we additionally introduce two novel criteria for uncertainty. In the 3D case, we use the resulting uncertainty measure to show the annotator voxels lying on the same planar patch, which makes batch annotation much easier than if they were randomly distributed in the volume. The planar patch is found using a branch-and-bound algorithm that finds a patch with the most informative instances. We evaluate our approach on Electron Microscopy and Magnetic Resonance image volumes, as well as on regular images of horses and faces. We demonstrate a substantial performance increase over state-of-the-art approaches.

北京阿比特科技有限公司