We consider the allocation of $m$ balls into $n$ bins with incomplete information. In the classical Two-Choice process a ball first queries the load of two randomly chosen bins and is then placed in the least loaded bin. In our setting, each ball also samples two random bins but can only estimate a bin's load by sending binary queries of the form "Is the load at least the median?" or "Is the load at least 100?". For the lightly loaded case $m=O(n)$, Feldheim and Gurel-Gurevich (2021) showed that with one query it is possible to achieve a maximum load of $O(\sqrt{\log n/\log \log n})$, and posed the question whether a maximum load of $m/n+O(\sqrt{\log n/\log \log n})$ is possible for any $m = \Omega(n)$. In this work, we resolve this open problem by proving a lower bound of $m/n+\Omega( \sqrt{\log n})$ for a fixed $m=\Theta(n \sqrt{\log n})$, and a lower bound of $m/n+\Omega(\log n/\log \log n)$ for some $m$ depending on the used strategy. We complement this negative result by proving a positive result for multiple queries. In particular, we show that with only two binary queries per chosen bin, there is an oblivious strategy which ensures a maximum load of $m/n+O(\sqrt{\log n})$ for any $m \geq 1$. Further, for any number of $k = O(\log \log n)$ binary queries, the upper bound on the maximum load improves to $m/n + O(k(\log n)^{1/k})$ for any $m \geq 1$. Further, this result for $k$ queries implies (i) new bounds for the $(1+\beta)$-process introduced by Peres et al (2015), (ii) new bounds for the graphical balanced allocation process on dense expander graphs, and (iii) the bound of $m/n+O(\log \log n)$ on the maximum load achieved by the Two-Choice process, including the heavily loaded case $m=\Omega(n)$ derived by Berenbrink et al. (2006). One novel aspect of our proofs is the use of multiple super-exponential potential functions, which might be of use in future work.
This paper investigates a new downlink nonorthogonal multiple access (NOMA) system, where a multiantenna unmanned aerial vehicle (UAV) is powered by wireless power transfer (WPT) and serves as the base station for multiple pairs of ground users (GUs) running NOMA in each pair. An energy efficiency (EE) maximization problem is formulated to jointly optimize the WPT time and the placement for the UAV, and the allocation of the UAV's transmit power between different NOMA user pairs and within each pair. To efficiently solve this nonconvex problem, we decompose the problem into three subproblems using block coordinate descent. For the subproblem of intra-pair power allocation within each NOMA user pair, we construct a supermodular game with confirmed convergence to a Nash equilibrium. Given the intra-pair power allocation, successive convex approximation is applied to convexify and solve the subproblem of WPT time allocation and inter-pair power allocation between the user pairs. Finally, we solve the subproblem of UAV placement by using the Lagrange multiplier method. Simulations show that our approach can substantially outperform its alternatives that do not use NOMA and WPT techniques or that do not optimize the UAV location.
Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.
In this paper we propose a methodology to accelerate the resolution of the so-called "Sorted L-One Penalized Estimation" (SLOPE) problem. Our method leverages the concept of "safe screening", well-studied in the literature for \textit{group-separable} sparsity-inducing norms, and aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of \(\tfrac{n(n+1)}{2}\) inequalities for each element of the \(n\)-dimensional primal vector and prove that the latter can be safely screened if some subsets of these inequalities are verified. We propose moreover an efficient algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has a complexity \(\mathcal{O}(n\log n + LT)\) where \(T\leq n\) is a problem-dependent constant and \(L\) is the number of zeros identified by the tests. Numerical experiments confirm that, for a prescribed computational budget, the proposed methodology leads to significant improvements of the solving precision.
Similarity query is the family of queries based on some similarity metrics. Unlike the traditional database queries which are mostly based on value equality, similarity queries aim to find targets "similar enough to" the given data objects, depending on some similarity metric, e.g., Euclidean distance, cosine similarity and so on. To measure the similarity between data objects, traditional methods normally work on low level or syntax features(e.g., basic visual features on images or bag-of-word features of text), which makes them weak to compute the semantic similarities between objects. So for measuring data similarities semantically, neural embedding is applied. Embedding techniques work by representing the raw data objects as vectors (so called "embeddings" or "neural embeddings" since they are mostly generated by neural network models) that expose the hidden semantics of the raw data, based on which embeddings do show outstanding effectiveness on capturing data similarities, making it one of the most widely used and studied techniques in the state-of-the-art similarity query processing research. But there are still many open challenges on the efficiency of embedding based similarity query processing, which are not so well-studied as the effectiveness. In this survey, we first provide an overview of the "similarity query" and "similarity query processing" problems. Then we talk about recent approaches on designing the indexes and operators for highly efficient similarity query processing on top of embeddings (or more generally, high dimensional data). Finally, we investigate the specific solutions with and without using embeddings in selected application domains of similarity queries, including entity resolution and information retrieval. By comparing the solutions, we show how neural embeddings benefit those applications.
We study dynamic algorithms for the problem of maximizing a monotone submodular function over a stream of $n$ insertions and deletions. We show that any algorithm that maintains a $(0.5+\epsilon)$-approximate solution under a cardinality constraint, for any constant $\epsilon>0$, must have an amortized query complexity that is $\mathit{polynomial}$ in $n$. Moreover, a linear amortized query complexity is needed in order to maintain a $0.584$-approximate solution. This is in sharp contrast with recent dynamic algorithms of [LMNF+20, Mon20] that achieve $(0.5-\epsilon)$-approximation with a $\mathsf{poly}\log(n)$ amortized query complexity. On the positive side, when the stream is insertion-only, we present efficient algorithms for the problem under a cardinality constraint and under a matroid constraint with approximation guarantee $1-1/e-\epsilon$ and amortized query complexities $\smash{O(\log (k/\epsilon)/\epsilon^2)}$ and $\smash{k^{\tilde{O}(1/\epsilon^2)}\log n}$, respectively, where $k$ denotes the cardinality parameter or the rank of the matroid.
In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game\footnote{To the best of our knowledge, the algorithm from \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} has computational complexity $O(k^{14}\max\{a,b\}^{13})$}, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). In this work, we present the first known $\epsilon$-approximation algorithm to compute NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\epsilon^{-4} k^8 \max\{a,b\}^2)$ for arbitrary settings of these parameters. Moreover, this algorithm computes approximate coarse correlated equilibrium strategies in the multiplayer (continuous and discrete) Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \epsilon^{-4} k^8 n^2 + \ell^2 \epsilon^{-2} k^3 n (n+k))$, where $n$ is the maximum troop count. Before this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria by a novel (to the author's knowledge) sampling technique with which we implicitly perform multiplicative weights update over the exponentially many strategies available to each player.
Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured in Makur, Mossel, Polyanskiy (ISIT 2021).
There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs $(\mathcal{A},\mathcal{T})$, such that if the distribution on examples in the data passes the tester $\mathcal{T}$ then one can safely trust the output of the agnostic learner $\mathcal{A}$ on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of $n^{\tilde{O}(1/\epsilon^4)}$. This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the $L_1$ and EMD distance measures. A key step in the analysis is a novel characterization of concentration and anti-concentration properties of a distribution whose low-degree moments approximately match those of a Gaussian. We also use tools from polynomial approximation theory. In contrast, we show strong lower bounds on the combined run-times of tester-learner pairs for the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Through these lower bounds we exhibit natural problems where there is a dramatic gap between standard agnostic learning run-time and the run-time of the best tester-learner pair.