The Internet of Things (IoT) is seen as a novel technical paradigm aimed at enabling connectivity between billions of interconnected devices all around the world. This IoT is being served in various domains, such as smart healthcare, traffic surveillance, smart homes, smart cities, and various industries. IoT's main functionality includes sensing the surrounding environment, collecting data from the surrounding, and transmitting those data to the remote data centers or the cloud. This sharing of vast volumes of data between billions of IoT devices generates a large energy demand and increases energy wastage in the form of heat. The Green IoT envisages reducing the energy consumption of IoT devices and keeping the environment safe and clean. Inspired by achieving a sustainable next-generation IoT ecosystem and guiding us toward making a healthy green planet, we first offer an overview of Green IoT (GIoT), and then the challenges and the future directions regarding the GIoT are presented in our study.
Seismic full waveform inversion (FWI) is a powerful geophysical imaging technique that produces high-resolution subsurface models by iteratively minimizing the misfit between the simulated and observed seismograms. Unfortunately, conventional FWI with least-squares function suffers from many drawbacks such as the local-minima problem and computation of explicit gradient. It is particularly challenging with the contaminated measurements or poor starting models. Recent works relying on partial differential equations and neural networks show promising performance for two-dimensional FWI. Inspired by the competitive learning of generative adversarial networks, we proposed an unsupervised learning paradigm that integrates wave equation with a discriminate network to accurately estimate the physically consistent models in a distribution sense. Our framework needs no labelled training data nor pretraining of the network, is flexible to achieve multi-parameters inversion with minimal user interaction. The proposed method faithfully recovers the well-known synthetic models that outperforms the classical algorithms. Furthermore, our work paves the way to sidestep the local-minima issue via reducing the sensitivity to initial models and noise.
Due to the pervasive diffusion of personal mobile and IoT devices, many "smart environments" (e.g., smart cities and smart factories) will be, generators of huge amounts of data. Currently, analysis of this data is typically achieved through centralised cloud-based services. However, according to many studies, this approach may present significant issues from the standpoint of data ownership, as well as wireless network capacity. In this paper, we exploit the fog computing paradigm to move computation close to where data is produced. We exploit a well-known distributed machine learning framework (Hypothesis Transfer Learning), and perform data analytics on mobile nodes passing by IoT devices, in addition to fog gateways at the edge of the network infrastructure. We analyse the performance of different configurations of the distributed learning framework, in terms of (i) accuracy obtained in the learning task and (ii) energy spent to send data between the involved nodes. Specifically, we consider reference wireless technologies for communication between the different types of nodes we consider, e.g. LTE, Nb-IoT, 802.15.4, 802.11, etc. Our results show that collecting data through the mobile nodes and executing the distributed analytics using short-range communication technologies, such as 802.15.4 and 802.11, allows to strongly reduce the energy consumption of the system up to $94\%$ with a loss in accuracy w.r.t. a centralised cloud solution up to $2\%$.
Wide Area Networks (WAN) are a key infrastructure in today's society. During the last years, WANs have seen a considerable increase in network's traffic as well as in the number of network applications. To enable the deployment of emergent network applications (e.g., Vehicular networks, Internet of Things), existing Traffic Engineering (TE) solutions must be able to achieve high performance real-time network operation. In addition, TE solutions must be able to adapt to dynamic scenarios (e.g., changes in the traffic matrix or topology link failures). However, current TE technologies rely on hand-crafted heuristics or computationally expensive solvers, which are not suitable for highly dynamic TE scenarios. In this paper we propose Enero, an efficient real-time TE engine. Enero is based on a two-stage optimization process. In the first one, it leverages Deep Reinforcement Learning (DRL) to optimize the routing configuration by generating a long-term TE strategy. We integrated a Graph Neural Network (GNN) into the DRL agent to enable efficient TE on dynamic networks. In the second stage, Enero uses a Local Search algorithm to improve DRL's solution without adding computational overhead to the optimization process. Enero offers a lower bound in performance, enabling the network operator to know the worst-case performance of the DRL agent. We believe that the lower bound in performance will lighten the path of deploying DRL-based solutions in real-world network scenarios. The experimental results indicate that Enero is able to operate in real-world dynamic network topologies in 4.5 seconds on average for topologies up to 100 edges.
Conversation generation as a challenging task in Natural Language Generation (NLG) has been increasingly attracting attention over the last years. A number of recent works adopted sequence-to-sequence structures along with external knowledge, which successfully enhanced the quality of generated conversations. Nevertheless, few works utilized the knowledge extracted from similar conversations for utterance generation. Taking conversations in customer service and court debate domains as examples, it is evident that essential entities/phrases, as well as their associated logic and inter-relationships can be extracted and borrowed from similar conversation instances. Such information could provide useful signals for improving conversation generation. In this paper, we propose a novel reading and memory framework called Deep Reading Memory Network (DRMN) which is capable of remembering useful information of similar conversations for improving utterance generation. We apply our model to two large-scale conversation datasets of justice and e-commerce fields. Experiments prove that the proposed model outperforms the state-of-the-art approaches.
The collective attention on online items such as web pages, search terms, and videos reflects trends that are of social, cultural, and economic interest. Moreover, attention trends of different items exhibit mutual influence via mechanisms such as hyperlinks or recommendations. Many visualisation tools exist for time series, network evolution, or network influence; however, few systems connect all three. In this work, we present AttentionFlow, a new system to visualise networks of time series and the dynamic influence they have on one another. Centred around an ego node, our system simultaneously presents the time series on each node using two visual encodings: a tree ring for an overview and a line chart for details. AttentionFlow supports interactions such as overlaying time series of influence and filtering neighbours by time or flux. We demonstrate AttentionFlow using two real-world datasets, VevoMusic and WikiTraffic. We show that attention spikes in songs can be explained by external events such as major awards, or changes in the network such as the release of a new song. Separate case studies also demonstrate how an artist's influence changes over their career, and that correlated Wikipedia traffic is driven by cultural interests. More broadly, AttentionFlow can be generalised to visualise networks of time series on physical infrastructures such as road networks, or natural phenomena such as weather and geological measurements.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.
Recently, generative adversarial networks (GANs) have shown promising performance in generating realistic images. However, they often struggle in learning complex underlying modalities in a given dataset, resulting in poor-quality generated images. To mitigate this problem, we present a novel approach called mixture of experts GAN (MEGAN), an ensemble approach of multiple generator networks. Each generator network in MEGAN specializes in generating images with a particular subset of modalities, e.g., an image class. Instead of incorporating a separate step of handcrafted clustering of multiple modalities, our proposed model is trained through an end-to-end learning of multiple generators via gating networks, which is responsible for choosing the appropriate generator network for a given condition. We adopt the categorical reparameterization trick for a categorical decision to be made in selecting a generator while maintaining the flow of the gradients. We demonstrate that individual generators learn different and salient subparts of the data and achieve a multiscale structural similarity (MS-SSIM) score of 0.2470 for CelebA and a competitive unsupervised inception score of 8.33 in CIFAR-10.
Recently introduced generative adversarial network (GAN) has been shown numerous promising results to generate realistic samples. The essential task of GAN is to control the features of samples generated from a random distribution. While the current GAN structures, such as conditional GAN, successfully generate samples with desired major features, they often fail to produce detailed features that bring specific differences among samples. To overcome this limitation, here we propose a controllable GAN (ControlGAN) structure. By separating a feature classifier from a discriminator, the generator of ControlGAN is designed to learn generating synthetic samples with the specific detailed features. Evaluated with multiple image datasets, ControlGAN shows a power to generate improved samples with well-controlled features. Furthermore, we demonstrate that ControlGAN can generate intermediate features and opposite features for interpolated and extrapolated input labels that are not used in the training process. It implies that ControlGAN can significantly contribute to the variety of generated samples.
Mobile network that millions of people use every day is one of the most complex systems in real world. Optimization of mobile network to meet exploding customer demand and reduce CAPEX/OPEX poses greater challenges than in prior works. Actually, learning to solve complex problems in real world to benefit everyone and make the world better has long been ultimate goal of AI. However, application of deep reinforcement learning (DRL) to complex problems in real world still remains unsolved, due to imperfect information, data scarcity and complex rules in real world, potential negative impact to real world, etc. To bridge this reality gap, we propose a sim-to-real framework to direct transfer learning from simulation to real world without any training in real world. First, we distill temporal-spatial relationships between cells and mobile users to scalable 3D image-like tensor to best characterize partially observed mobile network. Second, inspired by AlphaGo, we introduce a novel self-play mechanism to empower DRL agents to gradually improve intelligence by competing for best record on multiple tasks, just like athletes compete for world record in decathlon. Third, a decentralized DRL method is proposed to coordinate multi-agents to compete and cooperate as a team to maximize global reward and minimize potential negative impact. Using 7693 unseen test tasks over 160 unseen mobile networks in another simulator as well as 6 field trials on 4 commercial mobile networks in real world, we demonstrate the capability of this sim-to-real framework to direct transfer the learning not only from one simulator to another simulator, but also from simulation to real world. This is the first time that a DRL agent successfully transfers its learning directly from simulation to very complex real world problems with imperfect information, complex rules, huge state/action space, and multi-agent interactions.