亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Industry 4.0 factories are complex and data-driven. Data is yielded from many sources, including sensors, PLCs, and other devices, but also from IT, like ERP or CRM systems. We ask how to collect and process this data in a way, such that it includes metadata and can be used for industrial analytics or to derive intelligent support systems. This paper describes a new, query model based approach, which uses a big data architecture to capture data from various sources using OPC UA as a foundation. It buffers and preprocesses the information for the purpose of harmonizing and providing a holistic state space of a factory, as well as mappings to the current state of a production site. That information can be made available to multiple processing sinks, decoupled from the data sources, which enables them to work with the information without interfering with devices of the production, disturbing the network devices they are working in, or influencing the production process negatively. Metadata and connected semantic information is kept throughout the process, allowing to feed algorithms with meaningful data, so that it can be accessed in its entirety to perform time series analysis, machine learning or similar evaluations as well as replaying the data from the buffer for repeatable simulations.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Cognition · Learning · Analysis · Processing(編程語言) ·
2023 年 7 月 25 日

The analysis of brain signals holds considerable importance in enhancing our comprehension of diverse learning techniques and cognitive mechanisms. Game-based learning is increasingly being recognized for its interactive and engaging educational approach. A pilot study of twelve participants divided into experimental and control groups was conducted to understand its effects on cognitive processes. Both groups were provided with the same contents regarding the basic structure of the graph. The participants in the experimental group engaged in a quiz-based game, while those in the control group watched a pre-recorded video. Functional Near-Infrared Spectroscopy (fNIRS) was employed to acquire cerebral signals, and a series of pre and post-tests were administered. The findings of our study indicate that the group engaged in the game activity displayed elevated levels of oxygenated hemoglobin compared to the group involved in watching videos. Conversely, the deoxygenated hemoglobin levels remained relatively consistent across both groups throughout the learning process. The aforementioned findings suggest that the use of game-based learning has a substantial influence on cognitive processes. Furthermore, it is evident that both the game and video groups exhibited higher neural activity in the Lateral Prefrontal cortex (PFC). The oxygenated hemoglobin ratio demonstrates that the game group had 2.33 times more neural processing in the Lateral PFC than the video group. This data is further supported by the knowledge gain analysis, which indicates that the game-based approach resulted in a 47.74% higher knowledge gain than the video group, as calculated from the difference in pre-and post-test scores.

Optical sensors have played a pivotal role in acquiring real world data for critical applications. This data, when integrated with advanced machine learning algorithms provides meaningful information thus enhancing human vision. This paper focuses on various optical technologies for design and development of state-of-the-art out-cabin forward vision systems and in-cabin driver monitoring systems. The focused optical sensors include Longwave Thermal Imaging (LWIR) cameras, Near Infrared (NIR), Neuromorphic/ event cameras, Visible CMOS cameras and Depth cameras. Further the paper discusses different potential applications which can be employed using the unique strengths of each these optical modalities in real time environment.

Current transformer language models (LM) are large-scale models with billions of parameters. They have been shown to provide high performances on a variety of tasks but are also prone to shortcut learning and bias. Addressing such incorrect model behavior via parameter adjustments is very costly. This is particularly problematic for updating dynamic concepts, such as moral values, which vary culturally or interpersonally. In this work, we question the current common practice of storing all information in the model parameters and propose the Revision Transformer (RiT) to facilitate easy model updating. The specific combination of a large-scale pre-trained LM that inherently but also diffusely encodes world knowledge with a clear-structured revision engine makes it possible to update the model's knowledge with little effort and the help of user interaction. We exemplify RiT on a moral dataset and simulate user feedback demonstrating strong performance in model revision even with small data. This way, users can easily design a model regarding their preferences, paving the way for more transparent AI models.

The Internet of Things (IoT) data and social media data are two of the fastest-growing data segments. Having high-quality data is crucial for making informed business decisions. The strategic process of leveraging insights from data is known as data-driven decision-making. To achieve this, it is necessary to collect, store, analyze, and protect data in the best ways possible. Data architecture is a complex task that involves describing the flow of data from its source to its destination and creating a blueprint for managing the data to meet business needs for information. In this paper, we utilize the Data Architecture Tool (DAT) to model data for Digital Space Management Service, which was developed as part of the VASARI project. This work focuses on describing the movement of data, data formats, data location, data processing (batch or real-time), data storage technologies, and main operations on the data.

By interacting, synchronizing, and cooperating with its physical counterpart in real time, digital twin is promised to promote an intelligent, predictive, and optimized modern city. Via interconnecting massive physical entities and their virtual twins with inter-twin and intra-twin communications, the Internet of digital twins (IoDT) enables free data exchange, dynamic mission cooperation, and efficient information aggregation for composite insights across vast physical/virtual entities. However, as IoDT incorporates various cutting-edge technologies to spawn the new ecology, severe known/unknown security flaws and privacy invasions of IoDT hinders its wide deployment. Besides, the intrinsic characteristics of IoDT such as \emph{decentralized structure}, \emph{information-centric routing} and \emph{semantic communications} entail critical challenges for security service provisioning in IoDT. To this end, this paper presents an in-depth review of the IoDT with respect to system architecture, enabling technologies, and security/privacy issues. Specifically, we first explore a novel distributed IoDT architecture with cyber-physical interactions and discuss its key characteristics and communication modes. Afterward, we investigate the taxonomy of security and privacy threats in IoDT, discuss the key research challenges, and review the state-of-the-art defense approaches. Finally, we point out the new trends and open research directions related to IoDT.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.

北京阿比特科技有限公司