亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

39 seconds. That is the timelapse between two consecutive cyber attacks as of 2023. Meaning that by the time you are done reading this abstract, about 1 or 2 additional cyber attacks would have occurred somewhere in the world. In this context of highly increased frequency of cyber threats, Security Operation Centers (SOC) and Computer Emergency Response Teams (CERT) can be overwhelmed. In order to relieve the cybersecurity teams in their investigative effort and help them focus on more added-value tasks, machine learning approaches and methods started to emerge. This paper introduces a novel method, IsoEx, for detecting anomalous and potentially problematic command lines during the investigation of contaminated devices. IsoEx is built around a set of features that leverages the log structure of the command line, as well as its parent/child relationship, to achieve a greater accuracy than traditional methods. To detect anomalies, IsoEx resorts to an unsupervised anomaly detection technique that is both highly sensitive and lightweight. A key contribution of the paper is its emphasis on interpretability, achieved through the features themselves and the application of eXplainable Artificial Intelligence (XAI) techniques and visualizations. This is critical to ensure the adoption of the method by SOC and CERT teams, as the paper argues that the current literature on machine learning for log investigation has not adequately addressed the issue of explainability. This method was proven efficient in a real-life environment as it was built to support a company\'s SOC and CERT

相關內容

We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_{Q}$ qubits. The primary objective is to utilize physics-inspired deep learning techniques to accurately solve the time evolution of the different physical observables within the quantum system. To accomplish this objective, we embed the necessary physical information into an underlying neural network to effectively tackle the problem. In particular, we impose the hermiticity condition on all physical observables and make use of the principle of least action, guaranteeing the acquisition of the most appropriate counterdiabatic terms based on the underlying physics. The proposed approach offers a dependable alternative to address the CD driving problem, free from the constraints typically encountered in previous methodologies relying on classical numerical approximations. Our method provides a general framework to obtain optimal results from the physical observables relevant to the problem, including the external parameterization in time known as scheduling function, the gauge potential or operator involving the non-adiabatic terms, as well as the temporal evolution of the energy levels of the system, among others. The main applications of this methodology have been the $\mathrm{H_{2}}$ and $\mathrm{LiH}$ molecules, represented by a 2-qubit and 4-qubit systems employing the STO-3G basis. The presented results demonstrate the successful derivation of a desirable decomposition for the non-adiabatic terms, achieved through a linear combination utilizing Pauli operators. This attribute confers significant advantages to its practical implementation within quantum computing algorithms.

When students and users of statistical methods first learn about regression analysis there is an emphasis on the technical details of models and estimation methods that invariably runs ahead of the purposes for which these models might be used. More broadly, statistics is widely understood to provide a body of techniques for "modelling data", underpinned by what we describe as the "true model myth", according to which the task of the statistician/data analyst is to build a model that closely approximates the true data generating process. By way of our own historical examples and a brief review of mainstream clinical research journals, we describe how this perspective leads to a range of problems in the application of regression methods, including misguided "adjustment" for covariates, misinterpretation of regression coefficients and the widespread fitting of regression models without a clear purpose. We then outline an alternative approach to the teaching and application of regression methods, which begins by focussing on clear definition of the substantive research question within one of three distinct types: descriptive, predictive, or causal. The simple univariable regression model may be introduced as a tool for description, while the development and application of multivariable regression models should proceed differently according to the type of question. Regression methods will no doubt remain central to statistical practice as they provide a powerful tool for representing variation in a response or outcome variable as a function of "input" variables, but their conceptualisation and usage should follow from the purpose at hand.

Action anticipation involves forecasting future actions by connecting past events to future ones. However, this reasoning ignores the real-life hierarchy of events which is considered to be composed of three main parts: past, present, and future. We argue that considering these three main parts and their dependencies could improve performance. On the other hand, online action detection is the task of predicting actions in a streaming manner. In this case, one has access only to the past and present information. Therefore, in online action detection (OAD) the existing approaches miss semantics or future information which limits their performance. To sum up, for both of these tasks, the complete set of knowledge (past-present-future) is missing, which makes it challenging to infer action dependencies, therefore having low performances. To address this limitation, we propose to fuse both tasks into a single uniform architecture. By combining action anticipation and online action detection, our approach can cover the missing dependencies of future information in online action detection. This method referred to as JOADAA, presents a uniform model that jointly performs action anticipation and online action detection. We validate our proposed model on three challenging datasets: THUMOS'14, which is a sparsely annotated dataset with one action per time step, CHARADES, and Multi-THUMOS, two densely annotated datasets with more complex scenarios. JOADAA achieves SOTA results on these benchmarks for both tasks.

Is Stochastic Gradient Descent (SGD) substantially different from Glauber dynamics? This is a fundamental question at the time of understanding the most used training algorithm in the field of Machine Learning, but it received no answer until now. Here we show that in discrete optimization and inference problems, the dynamics of an SGD-like algorithm resemble very closely that of Metropolis Monte Carlo with a properly chosen temperature, which depends on the mini-batch size. This quantitative matching holds both at equilibrium and in the out-of-equilibrium regime, despite the two algorithms having fundamental differences (e.g.\ SGD does not satisfy detailed balance). Such equivalence allows us to use results about performances and limits of Monte Carlo algorithms to optimize the mini-batch size in the SGD-like algorithm and make it efficient at recovering the signal in hard inference problems.

Citation maturity time varies for different articles. However, the impact of all articles is measured in a fixed window. Clustering their citation trajectories helps understand the knowledge diffusion process and reveals that not all articles gain immediate success after publication. Moreover, clustering trajectories is necessary for paper impact recommendation algorithms. It is a challenging problem because citation time series exhibit significant variability due to non linear and non stationary characteristics. Prior works propose a set of arbitrary thresholds and a fixed rule based approach. All methods are primarily parameter dependent. Consequently, it leads to inconsistencies while defining similar trajectories and ambiguities regarding their specific number. Most studies only capture extreme trajectories. Thus, a generalised clustering framework is required. This paper proposes a feature based multiple k means cluster ensemble framework. 1,95,783 and 41,732 well cited articles from the Microsoft Academic Graph data are considered for clustering short term (10 year) and long term (30 year) trajectories, respectively. It has linear run time. Four distinct trajectories are obtained Early Rise Rapid Decline (2.2%), Early Rise Slow Decline (45%), Delayed Rise No Decline (53%), and Delayed Rise Slow Decline (0.8%). Individual trajectory differences for two different spans are studied. Most papers exhibit Early Rise Slow Decline and Delayed Rise No Decline patterns. The growth and decay times, cumulative citation distribution, and peak characteristics of individual trajectories are redefined empirically. A detailed comparative study reveals our proposed methodology can detect all distinct trajectory classes.

There are now many comprehension algorithms for understanding the decisions of a machine learning algorithm. Among these are those based on the generation of counterfactual examples. This article proposes to view this generation process as a source of creating a certain amount of knowledge that can be stored to be used, later, in different ways. This process is illustrated in the additive model and, more specifically, in the case of the naive Bayes classifier, whose interesting properties for this purpose are shown.

Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

As we are aware, various types of methods have been proposed to approximate the Caputo fractional derivative numerically. A common challenge of the methods is the non-local property of the Caputo fractional derivative which leads to the slow and memory consuming methods. Diffusive representation of fractional derivative is an efficient tool to overcome the mentioned challenge. This paper presents two new diffusive representations to approximate the Caputo fractional derivative of order $0<\alpha<1$. Error analysis of the newly presented methods together with some numerical examples are provided at the end.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司