This work discusses the correct modeling of the fully nonlinear free surface boundary conditions to be prescribed in water waves flow simulations based on potential flow theory. The main goal of such a discussion is that of identifying a mathematical formulation and a numerical treatment that can be used both to carry out transient simulations, and to compute steady solutions -- for any flow admitting them. In the literature on numerical towing tank in fact, steady and unsteady fully nonlinear potential flow solvers are characterized by different mathematical formulations. The kinematic and dynamic fully nonlinear free surface boundary conditions are discussed, and in particular it is proven that the kinematic free surface boundary condition, written in semi-Lagrangian form, can be manipulated to derive an alternative non penetration boundary condition by all means identical to the one used on the surface of floating bodies or on the basin bottom. The simplified mathematical problem obtained is discretized over space and time via Boundary Element Method (BEM) and Implicit Backward Difference Formula (BDF) scheme, respectively. The results confirm that the solver implemented is able to solve steady potential flow problems just by eliminating null time derivatives in the unsteady formulation. Numerical results obtained confirm that the solver implemented is able to accurately reproduce results of classical steady flow solvers available in the literature.
This paper studies the quantization of heavy-tailed data in some fundamental statistical estimation problems, where the underlying distributions have bounded moments of some order. We propose to truncate and properly dither the data prior to a uniform quantization. Our major standpoint is that (near) minimax rates of estimation error are achievable merely from the quantized data produced by the proposed scheme. In particular, concrete results are worked out for covariance estimation, compressed sensing, and matrix completion, all agreeing that the quantization only slightly worsens the multiplicative factor. Besides, we study compressed sensing where both covariate (i.e., sensing vector) and response are quantized. Under covariate quantization, although our recovery program is non-convex because the covariance matrix estimator lacks positive semi-definiteness, all local minimizers are proved to enjoy near optimal error bound. Moreover, by the concentration inequality of product process and covering argument, we establish near minimax uniform recovery guarantee for quantized compressed sensing with heavy-tailed noise.
The growing demand for accurate control in varying and unknown environments has sparked a corresponding increase in the requirements for power supply components, including permanent magnet synchronous motors (PMSMs). To infer the unknown part of the system, machine learning techniques are widely employed, especially Gaussian process regression (GPR) due to its flexibility of continuous system modeling and its guaranteed performance. For practical implementation, distributed GPR is adopted to alleviate the high computational complexity. However, the study of distributed GPR from a control perspective remains an open problem. In this paper, a control-aware optimal aggregation strategy of distributed GPR for PMSMs is proposed based on the Lyapunov stability theory. This strategy exclusively leverages the posterior mean, thereby obviating the need for computationally intensive calculations associated with posterior variance in alternative approaches. Moreover, the straightforward calculation process of our proposed strategy lends itself to seamless implementation in high-frequency PMSM control. The effectiveness of the proposed strategy is demonstrated in the simulations.
Over the past decades, hemodynamics simulators have steadily evolved and have become tools of choice for studying cardiovascular systems in-silico. While such tools are routinely used to simulate whole-body hemodynamics from physiological parameters, solving the corresponding inverse problem of mapping waveforms back to plausible physiological parameters remains both promising and challenging. Motivated by advances in simulation-based inference (SBI), we cast this inverse problem as statistical inference. In contrast to alternative approaches, SBI provides \textit{posterior distributions} for the parameters of interest, providing a \textit{multi-dimensional} representation of uncertainty for \textit{individual} measurements. We showcase this ability by performing an in-silico uncertainty analysis of five biomarkers of clinical interest comparing several measurement modalities. Beyond the corroboration of known facts, such as the feasibility of estimating heart rate, our study highlights the potential of estimating new biomarkers from standard-of-care measurements. SBI reveals practically relevant findings that cannot be captured by standard sensitivity analyses, such as the existence of sub-populations for which parameter estimation exhibits distinct uncertainty regimes. Finally, we study the gap between in-vivo and in-silico with the MIMIC-III waveform database and critically discuss how cardiovascular simulations can inform real-world data analysis.
We consider estimation of parameters defined as linear functionals of solutions to linear inverse problems. Any such parameter admits a doubly robust representation that depends on the solution to a dual linear inverse problem, where the dual solution can be thought as a generalization of the inverse propensity function. We provide the first source condition double robust inference method that ensures asymptotic normality around the parameter of interest as long as either the primal or the dual inverse problem is sufficiently well-posed, without knowledge of which inverse problem is the more well-posed one. Our result is enabled by novel guarantees for iterated Tikhonov regularized adversarial estimators for linear inverse problems, over general hypothesis spaces, which are developments of independent interest.
Let $\hat\Sigma=\frac{1}{n}\sum_{i=1}^n X_i\otimes X_i$ denote the sample covariance operator of centered i.i.d. observations $X_1,\dots,X_n$ in a real separable Hilbert space, and let $\Sigma=\mathbf{E}(X_1\otimes X_1)$. The focus of this paper is to understand how well the bootstrap can approximate the distribution of the operator norm error $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$, in settings where the eigenvalues of $\Sigma$ decay as $\lambda_j(\Sigma)\asymp j^{-2\beta}$ for some fixed parameter $\beta>1/2$. Our main result shows that the bootstrap can approximate the distribution of $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$ at a rate of order $n^{-\frac{\beta-1/2}{2\beta+4+\epsilon}}$ with respect to the Kolmogorov metric, for any fixed $\epsilon>0$. In particular, this shows that the bootstrap can achieve near $n^{-1/2}$ rates in the regime of large $\beta$--which substantially improves on previous near $n^{-1/6}$ rates in the same regime. In addition to obtaining faster rates, our analysis leverages a fundamentally different perspective based on coordinate-free techniques. Moreover, our result holds in greater generality, and we propose a new model that is compatible with both elliptical and Mar\v{c}enko-Pastur models in high-dimensional Euclidean spaces, which may be of independent interest.
The aim of this paper is to develop estimation and inference methods for the drift parameters of multivariate L\'evy-driven continuous-time autoregressive processes of order $p\in\mathbb{N}$. Starting from a continuous-time observation of the process, we develop consistent and asymptotically normal maximum likelihood estimators. We then relax the unrealistic assumption of continuous-time observation by considering natural discretizations based on a combination of Riemann-sum, finite difference, and thresholding approximations. The resulting estimators are also proven to be consistent and asymptotically normal under a general set of conditions, allowing for both finite and infinite jump activity in the driving L\'evy process. When discretizing the estimators, allowing for irregularly spaced observations is of great practical importance. In this respect, CAR($p$) models are not just relevant for "true" continuous-time processes: a CAR($p$) specification provides a natural continuous-time interpolation for modeling irregularly spaced data - even if the observed process is inherently discrete. As a practically relevant application, we consider the setting where the multivariate observation is known to possess a graphical structure. We refer to such a process as GrCAR and discuss the corresponding drift estimators and their properties. The finite sample behavior of all theoretical asymptotic results is empirically assessed by extensive simulation experiments.
This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval. We have conducted several numerical experiments using the proposed algorithm for various test problems to validate its performance. It can be said that the obtained numerical results are in accordance with the theoretical findings.
Many problems in robotics, such as estimating the state from noisy sensor data or aligning two point clouds, can be posed and solved as least-squares problems. Unfortunately, vanilla nonminimal solvers for least-squares problems are notoriously sensitive to outliers. As such, various robust loss functions have been proposed to reduce the sensitivity to outliers. Examples of loss functions include pseudo-Huber, Cauchy, and Geman-McClure. Recently, these loss functions have been generalized into a single loss function that enables the best loss function to be found adaptively based on the distribution of the residuals. However, even with the generalized robust loss function, most nonminimal solvers can only be solved locally given a prior state estimate due to the nonconvexity of the problem. The first contribution of this paper is to combine graduated nonconvexity (GNC) with the generalized robust loss function to solve least-squares problems without a prior state estimate and without the need to specify a loss function. Moreover, existing loss functions, including the generalized loss function, are based on Gaussian-like distribution. However, residuals are often defined as the squared norm of a multivariate error and distributed in a Chi-like fashion. The second contribution of this paper is to apply a norm-aware adaptive robust loss function within a GNC framework. The proposed approach enables a GNC formulation of a generalized loss function such that GNC can be readily applied to a wider family of loss functions. Furthermore, simulations and experiments demonstrate that the proposed method is more robust compared to non-GNC counterparts, and yields faster convergence times compared to other GNC formulations.
This paper focuses on the identification of graphical autoregressive models with dynamical latent variables. The dynamical structure of latent variables is described by a matrix polynomial transfer function. Taking account of the sparse interactions between the observed variables and the low-rank property of the latent-variable model, a new sparse plus low-rank optimization problem is formulated to identify the graphical auto-regressive part, which is then handled using the trace approximation and reweighted nuclear norm minimization. Afterwards, the dynamics of latent variables are recovered from low-rank spectral decomposition using the trace norm convex programming method. Simulation examples are used to illustrate the effectiveness of the proposed approach.
When estimating an effect of an action with a randomized or observational study, that study is often not a random sample of the desired target population. Instead, estimates from that study can be transported to the target population. However, transportability methods generally rely on a positivity assumption, such that all relevant covariate patterns in the target population are also observed in the study sample. Strict eligibility criteria, particularly in the context of randomized trials, may lead to violations of this assumption. Two common approaches to address positivity violations are restricting the target population and restricting the relevant covariate set. As neither of these restrictions are ideal, we instead propose a synthesis of statistical and simulation models to address positivity violations. We propose corresponding g-computation and inverse probability weighting estimators. The restriction and synthesis approaches to addressing positivity violations are contrasted with a simulation experiment and an illustrative example in the context of sexually transmitted infection testing uptake. In both cases, the proposed synthesis approach accurately addressed the original research question when paired with a thoughtfully selected simulation model. Neither of the restriction approaches were able to accurately address the motivating question. As public health decisions must often be made with imperfect target population information, model synthesis is a viable approach given a combination of empirical data and external information based on the best available knowledge.