Neural network-based survival methods can model data-driven covariate interactions. While these methods can provide better predictive performance than regression-based approaches, not all can model time-varying interactions and complex baseline hazards. To address this, we propose Case-Base Neural Networks (CBNNs) as a new approach that combines the case-base sampling framework with flexible neural network architectures. Using a novel sampling scheme and data augmentation to naturally account for censoring, we construct a feed-forward neural network that may take time as an input. CBNNs predict the probability of an event occurring at a given moment to estimate the hazard function. We compare the performance of CBNNs to regression and neural network-based survival methods in a simulation and three case studies using two time-dependent metrics. First, we examine performance on a simulation involving a complex baseline hazard and time-varying interactions to assess all methods, with CBNN outperforming competitors. Then, we apply all methods to three real data applications, with CBNNs outperforming the competing models in two studies and showing similar performance in the third. Our results highlight the benefit of combining case-base sampling with deep learning to provide a simple and flexible modeling framework for data-driven, time-varying interaction modeling of single event survival outcomes. An R package is available at //github.com/Jesse-Islam/cbnn.
We present new Dirichlet-Neumann and Neumann-Dirichlet algorithms with a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semi-discretization, we use the Lagrange multiplier approach to derive a coupled forward-backward optimality system, which can then be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, three variants can be found for the Dirichlet-Neumann and Neumann-Dirichlet algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.
1. Automated analysis of bioacoustic recordings using machine learning (ML) methods has the potential to greatly scale biodiversity monitoring efforts. The use of ML for high-stakes applications, such as conservation research, demands a data-centric approach with a focus on utilizing carefully annotated and curated evaluation and training data that is relevant and representative. Creating annotated datasets of sound recordings presents a number of challenges, such as managing large collections of recordings with associated metadata, developing flexible annotation tools that can accommodate the diverse range of vocalization profiles of different organisms, and addressing the scarcity of expert annotators. 2. We present Whombat a user-friendly, browser-based interface for managing audio recordings and annotation projects, with several visualization, exploration, and annotation tools. It enables users to quickly annotate, review, and share annotations, as well as visualize and evaluate a set of machine learning predictions on a dataset. The tool facilitates an iterative workflow where user annotations and machine learning predictions feedback to enhance model performance and annotation quality. 3. We demonstrate the flexibility of Whombat by showcasing two distinct use cases: an project aimed at enhancing automated UK bat call identification at the Bat Conservation Trust (BCT), and a collaborative effort among the USDA Forest Service and Oregon State University researchers exploring bioacoustic applications and extending automated avian classification models in the Pacific Northwest, USA. 4. Whombat is a flexible tool that can effectively address the challenges of annotation for bioacoustic research. It can be used for individual and collaborative work, hosted on a shared server or accessed remotely, or run on a personal computer without the need for coding skills.
This paper addresses the benefits of pooling data for shared learning in maintenance operations. We consider a set of systems subject to Poisson degradation that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs). We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. We leverage this decomposition to demonstrate that pooling data can lead to significant cost reductions compared to not pooling.
Neural dynamical systems with stable attractor structures, such as point attractors and continuous attractors, are hypothesized to underlie meaningful temporal behavior that requires working memory. However, working memory may not support useful learning signals necessary to adapt to changes in the temporal structure of the environment. We show that in addition to the continuous attractors that are widely implicated, periodic and quasi-periodic attractors can also support learning arbitrarily long temporal relationships. Unlike the continuous attractors that suffer from the fine-tuning problem, the less explored quasi-periodic attractors are uniquely qualified for learning to produce temporally structured behavior. Our theory has broad implications for the design of artificial learning systems and makes predictions about observable signatures of biological neural dynamics that can support temporal dependence learning and working memory. Based on our theory, we developed a new initialization scheme for artificial recurrent neural networks that outperforms standard methods for tasks that require learning temporal dynamics. Moreover, we propose a robust recurrent memory mechanism for integrating and maintaining head direction without a ring attractor.
The design of automatic speech pronunciation assessment can be categorized into closed and open response scenarios, each with strengths and limitations. A system with the ability to function in both scenarios can cater to diverse learning needs and provide a more precise and holistic assessment of pronunciation skills. In this study, we propose a Multi-task Pronunciation Assessment model called MultiPA. MultiPA provides an alternative to Kaldi-based systems in that it has simpler format requirements and better compatibility with other neural network models. Compared with previous open response systems, MultiPA provides a wider range of evaluations, encompassing assessments at both the sentence and word-level. Our experimental results show that MultiPA achieves comparable performance when working in closed response scenarios and maintains more robust performance when directly used for open responses.
Accurately estimating parameters in complex nonlinear systems is crucial across scientific and engineering fields. We present a novel approach for parameter estimation using a neural network with the Huber loss function. This method taps into deep learning's abilities to uncover parameters governing intricate behaviors in nonlinear equations. We validate our approach using synthetic data and predefined functions that model system dynamics. By training the neural network with noisy time series data, it fine-tunes the Huber loss function to converge to accurate parameters. We apply our method to damped oscillators, Van der Pol oscillators, Lotka-Volterra systems, and Lorenz systems under multiplicative noise. The trained neural network accurately estimates parameters, evident from closely matching latent dynamics. Comparing true and estimated trajectories visually reinforces our method's precision and robustness. Our study underscores the Huber loss-guided neural network as a versatile tool for parameter estimation, effectively uncovering complex relationships in nonlinear systems. The method navigates noise and uncertainty adeptly, showcasing its adaptability to real-world challenges.
Deep neural networks (DNN) are singular statistical models which exhibit complex degeneracies. In this work, we illustrate how a quantity known as the \emph{learning coefficient} introduced in singular learning theory quantifies precisely the degree of degeneracy in deep neural networks. Importantly, we will demonstrate that degeneracy in DNN cannot be accounted for by simply counting the number of "flat" directions. We propose a computationally scalable approximation of a localized version of the learning coefficient using stochastic gradient Langevin dynamics. To validate our approach, we demonstrate its accuracy in low-dimensional models with known theoretical values. Importantly, the local learning coefficient can correctly recover the ordering of degeneracy between various parameter regions of interest. An experiment on MNIST shows the local learning coefficient can reveal the inductive bias of stochastic opitmizers for more or less degenerate critical points.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.