亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In Chinese text recognition, to compensate for the insufficient local data and improve the performance of local few-shot character recognition, it is often necessary for one organization to collect a large amount of data from similar organizations. However, due to the natural presence of private information in text data, such as addresses and phone numbers, different organizations are unwilling to share private data. Therefore, it becomes increasingly important to design a privacy-preserving collaborative training framework for the Chinese text recognition task. In this paper, we introduce personalized federated learning (pFL) into the Chinese text recognition task and propose the pFedCR algorithm, which significantly improves the model performance of each client (organization) without sharing private data. Specifically, pFedCR comprises two stages: multiple rounds of global model training stage and the the local personalization stage. During stage 1, an attention mechanism is incorporated into the CRNN model to adapt to various client data distributions. Leveraging inherent character data characteristics, a balanced dataset is created on the server to mitigate character imbalance. In the personalization phase, the global model is fine-tuned for one epoch to create a local model. Parameter averaging between local and global models combines personalized and global feature extraction capabilities. Finally, we fine-tune only the attention layers to enhance its focus on local personalized features. The experimental results on three real-world industrial scenario datasets show that the pFedCR algorithm can improve the performance of local personalized models by about 20\% while also improving their generalization performance on other client data domains. Compared to other state-of-the-art personalized federated learning methods, pFedCR improves performance by 6\% $\sim$ 8\%.

相關內容

We provide a variety of lower bounds for the well-known shortcut set problem: how much can one decrease the diameter of a directed graph on $n$ vertices and $m$ edges by adding $O(n)$ or $O(m)$ of shortcuts from the transitive closure of the graph. Our results are based on a vast simplification of the recent construction of Bodwin and Hoppenworth [FOCS 2023] which was used to show an $\widetilde{\Omega}(n^{1/4})$ lower bound for the $O(n)$-sized shortcut set problem. We highlight that our simplification completely removes the use of the convex sets by B\'ar\'any and Larman [Math. Ann. 1998] used in all previous lower bound constructions. Our simplification also removes the need for randomness and further removes some log factors. This allows us to generalize the construction to higher dimensions, which in turn can be used to show the following results. For $O(m)$-sized shortcut sets, we show an $\Omega(n^{1/5})$ lower bound, improving on the previous best $\Omega(n^{1/8})$ lower bound. For all $\varepsilon > 0$, we show that there exists a $\delta > 0$ such that there are $n$-vertex $O(n)$-edge graphs $G$ where adding any shortcut set of size $O(n^{2-\varepsilon})$ keeps the diameter of $G$ at $\Omega(n^\delta)$. This improves the sparsity of the constructed graph compared to a known similar result by Hesse [SODA 2003]. We also consider the sourcewise setting for shortcut sets: given a graph $G=(V,E)$, a set $S\subseteq V$, how much can we decrease the sourcewise diameter of $G$, $\max_{(s, v) \in S \times V, \text{dist}(s, v) < \infty} \text{dist}(s,v)$ by adding a set of edges $H$ from the transitive closure of $G$? We show that for any integer $d \ge 2$, there exists a graph $G=(V, E)$ on $n$ vertices and $S \subseteq V$ with $|S| = \widetilde{\Theta}(n^{3/(d+3)})$, such that when adding $O(n)$ or $O(m)$ shortcuts, the sourcewise diameter is $\widetilde{\Omega}(|S|^{1/3})$.

Trendy suggestions for learning-based elastic warps enable the deep image stitchings to align images exposed to large parallax errors. Despite the remarkable alignments, the methods struggle with occasional holes or discontinuity between overlapping and non-overlapping regions of a target image as the applied training strategy mostly focuses on overlap region alignment. As a result, they require additional modules such as seam finder and image inpainting for hiding discontinuity and filling holes, respectively. In this work, we suggest Recurrent Elastic Warps (REwarp) that address the problem with Dirichlet boundary condition and boost performances by residual learning for recurrent misalign correction. Specifically, REwarp predicts a homography and a Thin-plate Spline (TPS) under the boundary constraint for discontinuity and hole-free image stitching. Our experiments show the favorable aligns and the competitive computational costs of REwarp compared to the existing stitching methods. Our source code is available at //github.com/minshu-kim/REwarp.

This technical report explores the ability of ChatGPT in recognizing emotions from text, which can be the basis of various applications like interactive chatbots, data annotation, and mental health analysis. While prior research has shown ChatGPT's basic ability in sentiment analysis, its performance in more nuanced emotion recognition is not yet explored. Here, we conducted experiments to evaluate its performance of emotion recognition across different datasets and emotion labels. Our findings indicate a reasonable level of reproducibility in its performance, with noticeable improvement through fine-tuning. However, the performance varies with different emotion labels and datasets, highlighting an inherent instability and possible bias. The choice of dataset and emotion labels significantly impacts ChatGPT's emotion recognition performance. This paper sheds light on the importance of dataset and label selection, and the potential of fine-tuning in enhancing ChatGPT's emotion recognition capabilities, providing a groundwork for better integration of emotion analysis in applications using ChatGPT.

We consider the problem of connected coordinated motion planning for a large collective of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-complete, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of $d$, then the total duration of our overall schedule is $\mathcal{O}(d)$, which is optimal up to constant factors.

In rank-metric cryptography, a vector from a finite dimensional linear space over a finite field is viewed as the linear space spanned by its entries. The rank decoding problem which is the analogue of the problem of decoding a random linear code consists in recovering a basis of a random noise vector that was used to perturb a set of random linear equations sharing a secret solution. Assuming the intractability of this problem, we introduce a new construction of injective one-way trapdoor functions. Our solution departs from the frequent way of building public key primitives from error-correcting codes where, to establish the security, ad hoc assumptions about a hidden structure are made. Our method produces a hard-to-distinguish linear code together with low weight vectors which constitute the secret that helps recover the inputs.The key idea is to focus on trapdoor functions that take sufficiently enough input vectors sharing the same support. Applying then the error correcting algorithm designed for Low Rank Parity Check (LRPC) codes, we obtain an inverting algorithm that recovers the inputs with overwhelming probability.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司