亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural language models are probabilistic models of human text. They are predominantly trained using maximum likelihood estimation (MLE), which is equivalent to minimizing the forward cross-entropy between the empirical data distribution and the model distribution. However, various degeneration phenomena are still widely observed when decoding from the distributions learned by such models. We establish that the forward cross-entropy is suboptimal as a distance metric for aligning human and model distribution due to its (1) recall-prioritization (2) negative diversity ignorance and (3) train-test mismatch. In this paper, we propose Earth Mover Distance Optimization (EMO) for auto-regressive language modeling. EMO capitalizes on the inherent properties of earth mover distance to address the aforementioned challenges. Due to the high complexity of direct computation, we further introduce a feasible upper bound for EMO to ease end-to-end training. Upon extensive evaluation of language models trained using EMO and MLE. We find that EMO demonstrates a consistently better language modeling performance than MLE across domains. Moreover, EMO demonstrates noteworthy enhancements in downstream performance with minimal fine-tuning on merely 25,000 sentences. This highlights the tremendous potential of EMO as a lightweight calibration method for enhancing large-scale pre-trained language models.

相關內容

Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that our model achieves 76.1 driving score on the CARLA Town05 Long, and surpasses the Apollo baseline by 4.7 points under the same settings, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs. Code and models shall be released at //github.com/OpenGVLab/DriveMLM.

Reasoning with knowledge graphs (KGs) has primarily focused on triple-shaped facts. Recent advancements have been explored to enhance the semantics of these facts by incorporating more potent representations, such as hyper-relational facts. However, these approaches are limited to \emph{atomic facts}, which describe a single piece of information. This paper extends beyond \emph{atomic facts} and delves into \emph{nested facts}, represented by quoted triples where subjects and objects are triples themselves (e.g., ((\emph{BarackObama}, \emph{holds\_position}, \emph{President}), \emph{succeed\_by}, (\emph{DonaldTrump}, \emph{holds\_position}, \emph{President}))). These nested facts enable the expression of complex semantics like \emph{situations} over time and \emph{logical patterns} over entities and relations. In response, we introduce NestE, a novel KG embedding approach that captures the semantics of both atomic and nested factual knowledge. NestE represents each atomic fact as a $1\times3$ matrix, and each nested relation is modeled as a $3\times3$ matrix that rotates the $1\times3$ atomic fact matrix through matrix multiplication. Each element of the matrix is represented as a complex number in the generalized 4D hypercomplex space, including (spherical) quaternions, hyperbolic quaternions, and split-quaternions. Through thorough analysis, we demonstrate the embedding's efficacy in capturing diverse logical patterns over nested facts, surpassing the confines of first-order logic-like expressions. Our experimental results showcase NestE's significant performance gains over current baselines in triple prediction and conditional link prediction. The code and pre-trained models are open available at //github.com/xiongbo010/NestE.

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. However, even the most advanced open-source LLMs, such as the LLaMA family models, still face challenges when it comes to accurately solving complex multi-step mathematical problems. In this paper, we present an innovative process-oriented math verifier called \textbf{Math-Shepherd}, which assigns a reward score to each step of the LLM's outputs on math problems. The training of Math-Shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. With the guidance of Math-Shepherd, a series of open-source LLMs demonstrate exceptional performance. Among them, DeepSeek 67B \citep{DeepSeek-llm} stands out by achieving accuracy rates of 93.3\% on the GSM8K dataset and 48.1\% on the MATH dataset, without external enhancement such as tool usage. Our Math-Shepherd also outperforms the self-consistency method and other existing verification models. We believe that automatic process supervision holds significant potential for the future evolution of LLMs.

We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from input audio signal. To capture the expressive, detailed nature of human heads, including hair, ears, and finer-scale eye movements, we propose to couple speech signal with the latent space of neural parametric head models to create high-fidelity, temporally coherent motion sequences. We propose a new latent diffusion model for this task, operating in the expression space of neural parametric head models, to synthesize audio-driven realistic head sequences. In the absence of a dataset with corresponding NPHM expressions to audio, we optimize for these correspondences to produce a dataset of temporally-optimized NPHM expressions fit to audio-video recordings of people talking. To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of volumetric human heads, representing a significant advancement in the field of audio-driven 3D animation. Notably, our approach stands out in its ability to generate plausible motion sequences that can produce high-fidelity head animation coupled with the NPHM shape space. Our experimental results substantiate the effectiveness of FaceTalk, consistently achieving superior and visually natural motion, encompassing diverse facial expressions and styles, outperforming existing methods by 75% in perceptual user study evaluation.

Large language models such as GPT-3 & ChatGPT have transformed deep learning (DL), powering applications that have captured the public's imagination. These models are rapidly being adopted across domains for analytics on various modalities, often by finetuning pre-trained base models. Such models need multiple GPUs due to both their size and computational load, driving the development of a bevy of "model parallelism" techniques & tools. Navigating such parallelism choices, however, is a new burden for end users of DL such as data scientists, domain scientists, etc. who may lack the necessary systems knowhow. The need for model selection, which leads to many models to train due to hyper-parameter tuning or layer-wise finetuning, compounds the situation with two more burdens: resource apportioning and scheduling. In this work, we tackle these three burdens for DL users in a unified manner by formalizing them as a joint problem that we call SPASE: Select a Parallelism, Allocate resources, and SchedulE. We propose a new information system architecture to tackle the SPASE problem holistically, representing a key step toward enabling wider adoption of large DL models. We devise an extensible template for existing parallelism schemes and combine it with an automated empirical profiler for runtime estimation. We then formulate SPASE as an MILP. We find that direct use of an MILP-solver is significantly more effective than several baseline heuristics. We optimize the system runtime further with an introspective scheduling approach. We implement all these techniques into a new data system we call Saturn. Experiments with benchmark DL workloads show that Saturn achieves 39-49% lower model selection runtimes than typical current DL practice.

With the success of pre-trained visual-language (VL) models such as CLIP in visual representation tasks, transferring pre-trained models to downstream tasks has become a crucial paradigm. Recently, the prompt tuning paradigm, which draws inspiration from natural language processing (NLP), has made significant progress in VL field. However, preceding methods mainly focus on constructing prompt templates for text and visual inputs, neglecting the gap in class label representations between the VL models and downstream tasks. To address this challenge, we introduce an innovative label alignment method named \textbf{LAMM}, which can dynamically adjust the category embeddings of downstream datasets through end-to-end training. Moreover, to achieve a more appropriate label distribution, we propose a hierarchical loss, encompassing the alignment of the parameter space, feature space, and logits space. We conduct experiments on 11 downstream vision datasets and demonstrate that our method significantly improves the performance of existing multi-modal prompt learning models in few-shot scenarios, exhibiting an average accuracy improvement of 2.31(\%) compared to the state-of-the-art methods on 16 shots. Moreover, our methodology exhibits the preeminence in continual learning compared to other prompt tuning methods. Importantly, our method is synergistic with existing prompt tuning methods and can boost the performance on top of them. Our code and dataset will be publicly available at //github.com/gaojingsheng/LAMM.

Prompt recently have become an effective linguistic tool on utilizing the pre-trained language models. However, in few-shot scenarios, subtle changes of prompt's design always make the result widely different, and the prompt design is also easy to overfit the current limited samples. To alleviate this, we explore how to utilize suitable contrastive samples and multiple contrastive learning methods to realize a more robust prompt's representation. Therefore, the contrastive prompt model ConsPrompt combining with prompt encoding network, contrastive sampling modules, and contrastive scoring modules are introduced to realize differential contrastive learning. Our results exhibit the state-of-the-art performance in different few-shot settings, and the ablation experiments also certificate the effectiveness in utilizing multi-degree contrastive learning in prompt-based fine-tuning process.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

北京阿比特科技有限公司