亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Surrogate Modeling Toolbox (SMT) is an open-source Python package that offers a collection of surrogate modeling methods, sampling techniques, and a set of sample problems. This paper presents SMT 2.0, a major new release of SMT that introduces significant upgrades and new features to the toolbox. This release adds the capability to handle mixed-variable surrogate models and hierarchical variables. These types of variables are becoming increasingly important in several surrogate modeling applications. SMT 2.0 also improves SMT by extending sampling methods, adding new surrogate models, and computing variance and kernel derivatives for Kriging. This release also includes new functions to handle noisy and use multifidelity data. To the best of our knowledge, SMT 2.0 is the first open-source surrogate library to propose surrogate models for hierarchical and mixed inputs. This open-source software is distributed under the New BSD license.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Machine Translation · 循環神經網絡 · 值域 · 回合 ·
2024 年 3 月 6 日

adaptNMT is an open-source application that offers a streamlined approach to the development and deployment of Recurrent Neural Networks and Transformer models. This application is built upon the widely-adopted OpenNMT ecosystem, and is particularly useful for new entrants to the field, as it simplifies the setup of the development environment and creation of train, validation, and test splits. The application offers a graphing feature that illustrates the progress of model training, and employs SentencePiece for creating subword segmentation models. Furthermore, the application provides an intuitive user interface that facilitates hyperparameter customization. Notably, a single-click model development approach has been implemented, and models developed by adaptNMT can be evaluated using a range of metrics. To encourage eco-friendly research, adaptNMT incorporates a green report that flags the power consumption and kgCO${_2}$ emissions generated during model development. The application is freely available.

Computer models play a crucial role in numerous scientific and engineering domains. To ensure the accuracy of simulations, it is essential to properly calibrate the input parameters of these models through statistical inference. While Bayesian inference is the standard approach for this task, employing Markov Chain Monte Carlo methods often encounters computational hurdles due to the costly evaluation of likelihood functions and slow mixing rates. Although variational inference (VI) can be a fast alternative to traditional Bayesian approaches, VI has limited applicability due to boundary issues and local optima problems. To address these challenges, we propose flexible VI methods based on deep generative models that do not require parametric assumptions on the variational distribution. We embed a surjective transformation in our framework to avoid posterior truncation at the boundary. Additionally, we provide theoretical conditions that guarantee the success of the algorithm. Furthermore, our temperature annealing scheme can prevent being trapped in local optima through a series of intermediate posteriors. We apply our method to infectious disease models and a geophysical model, illustrating that the proposed method can provide fast and accurate inference compared to its competitors.

This paper presents an optimization-based solution to task and motion planning (TAMP) on mobile manipulators. Logic-geometric programming (LGP) has shown promising capabilities for optimally dealing with hybrid TAMP problems that involve abstract and geometric constraints. However, LGP does not scale well to high-dimensional systems (e.g. mobile manipulators) and can suffer from obstacle avoidance issues due to local minima. In this work, we extend LGP with a sampling-based reachability graph to enable solving optimal TAMP on high-DoF mobile manipulators. The proposed reachability graph can incorporate environmental information (obstacles) to provide the planner with sufficient geometric constraints. This reachability-aware heuristic efficiently prunes infeasible sequences of actions in the continuous domain, hence, it reduces replanning by securing feasibility at the final full path trajectory optimization. Our framework proves to be time-efficient in computing optimal and collision-free solutions, while outperforming the current state of the art on metrics of success rate, planning time, path length and number of steps. We validate our framework on the physical Toyota HSR robot and report comparisons on a series of mobile manipulation tasks of increasing difficulty. Videos of the experiments are available at //youtu.be/NEVVHEhQnOQ.

We introduce Mars 2.0 for modeling, analysis, verification and code generation of Cyber-Physical Systems. Mars 2.0 integrates Mars 1.0 with several important extensions and improvements, allowing the design of cyber-physical systems using the combination of AADL and Simulink/Stateflow, which provide a unified graphical framework for modeling the functionality, physicality and architecture of the system to be developed. For a safety-critical system, formal analysis and verification of its combined AADL and Simulink/Stateflow model can be conducted via the following steps. First, the toolchain automatically translates AADL and Simulink/Stateflow models into Hybrid CSP (HCSP), an extension of CSP for formally modeling hybrid systems. Second, the HCSP processes can be simulated using the HCSP simulator, and to complement incomplete simulation, they can be verified using the Hybrid Hoare Logic prover in Isabelle/HOL, as well as the more automated HHLPy prover. Finally, implementations in SystemC or C can be automatically generated from the verified HCSP processes. The transformation from AADL and Simulink/Stateflow to HCSP, and the one from HCSP to SystemC or C, are both guaranteed to be correct with formal proofs. This approach allows model-driven design of safety-critical cyber-physical systems based on graphical and formal models and proven-correct translation procedures. We demonstrate the use of the toolchain on several benchmarks of varying complexity, including several industrial-sized examples.

Multimodal Large Language Model (MLLMs) leverages Large Language Models as a cognitive framework for diverse visual-language tasks. Recent efforts have been made to equip MLLMs with visual perceiving and grounding capabilities. However, there still remains a gap in providing fine-grained pixel-level perceptions and extending interactions beyond text-specific inputs. In this work, we propose {\bf{AnyRef}}, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references, such as texts, boxes, images, or audio. This innovation empowers users with greater flexibility to engage with the model beyond textual and regional prompts, without modality-specific designs. Through our proposed refocusing mechanism, the generated grounding output is guided to better focus on the referenced object, implicitly incorporating additional pixel-level supervision. This simple modification utilizes attention scores generated during the inference of LLM, eliminating the need for extra computations while exhibiting performance enhancements in both grounding masks and referring expressions. With only publicly available training data, our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.

With the advent of Web 3.0, the swift advancement of technology confronts an imminent threat from quantum computing. Security protocols safeguarding the integrity of Web 2.0 and Web 3.0 are growing more susceptible to both quantum attacks and sophisticated classical threats. The article introduces our novel long-distance free-space quantum secure direct communication (LF QSDC) as a method to safeguard against security breaches in both quantum and classical contexts. Differing from techniques like quantum key distribution (QKD), LF QSDC surpasses constraints by facilitating encrypted data transmission sans key exchanges, thus diminishing the inherent weaknesses of key-based systems. The distinctiveness of this attribute, coupled with its quantum mechanics base, protects against quantum computer assaults and advanced non-quantum dangers, harmonizing seamlessly with the untrustworthy tenets of the Web 3.0 age. The focus of our study is the technical design and incorporation of LF QSDC into web 3.0 network infrastructures, highlighting its efficacy for extended-range communication. LF QSDC is based on the memory DL04 protocol and enhanced with our novel Quantum-Aware Low-Density Parity Check (LDPC), Pointing, Acquisition, and Tracking (PAT) technologies, and Atmospheric Quantum Correction Algorithm (AQCA). Utilizing this method not only bolsters the security of worldwide Web 3.0 networks but also guarantees their endurance in a time when quantum and sophisticated classical threats exist simultaneously. Consequently, LF QSDC stands out as a robust security solution, well-suited for Web 3.0 systems amidst the constantly evolving digital environment.

This paper introduces LeftRefill, an innovative approach to efficiently harness large Text-to-Image (T2I) diffusion models for reference-guided image synthesis. As the name implies, LeftRefill horizontally stitches reference and target views together as a whole input. The reference image occupies the left side, while the target canvas is positioned on the right. Then, LeftRefill paints the right-side target canvas based on the left-side reference and specific task instructions. Such a task formulation shares some similarities with contextual inpainting, akin to the actions of a human painter. This novel formulation efficiently learns both structural and textured correspondence between reference and target without other image encoders or adapters. We inject task and view information through cross-attention modules in T2I models, and further exhibit multi-view reference ability via the re-arranged self-attention modules. These enable LeftRefill to perform consistent generation as a generalized model without requiring test-time fine-tuning or model modifications. Thus, LeftRefill can be seen as a simple yet unified framework to address reference-guided synthesis. As an exemplar, we leverage LeftRefill to address two different challenges: reference-guided inpainting and novel view synthesis, based on the pre-trained StableDiffusion. Codes and models are released at //github.com/ewrfcas/LeftRefill.

Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.

Multimodal Named Entity Recognition (MNER) is a pivotal task designed to extract named entities from text with the support of pertinent images. Nonetheless, a notable paucity of data for Chinese MNER has considerably impeded the progress of this natural language processing task within the Chinese domain. Consequently, in this study, we compile a Chinese Multimodal NER dataset (CMNER) utilizing data sourced from Weibo, China's largest social media platform. Our dataset encompasses 5,000 Weibo posts paired with 18,326 corresponding images. The entities are classified into four distinct categories: person, location, organization, and miscellaneous. We perform baseline experiments on CMNER, and the outcomes underscore the effectiveness of incorporating images for NER. Furthermore, we conduct cross-lingual experiments on the publicly available English MNER dataset (Twitter2015), and the results substantiate our hypothesis that Chinese and English multimodal NER data can mutually enhance the performance of the NER model.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

北京阿比特科技有限公司