We consider the problem $(\mathrm{P})$ of fitting $n$ standard Gaussian random vectors in $\mathbb{R}^d$ to the boundary of a centered ellipsoid, as $n, d \to \infty$. This problem is conjectured to have a sharp feasibility transition: for any $\varepsilon > 0$, if $n \leq (1 - \varepsilon) d^2 / 4$ then $(\mathrm{P})$ has a solution with high probability, while $(\mathrm{P})$ has no solutions with high probability if $n \geq (1 + \varepsilon) d^2 /4$. So far, only a trivial bound $n \geq d^2 / 2$ is known on the negative side, while the best results on the positive side assume $n \leq d^2 / \mathrm{polylog}(d)$. In this work, we improve over previous approaches using a key result of Bartl & Mendelson on the concentration of Gram matrices of random vectors under mild assumptions on their tail behavior. This allows us to give a simple proof that $(\mathrm{P})$ is feasible with high probability when $n \leq d^2 / C$, for a (possibly large) constant $C > 0$.
A $c$-labeling $\phi: V(G) \rightarrow \{1, 2, \hdots, c \}$ of graph $G$ is distinguishing if, for every non-trivial automorphism $\pi$ of $G$, there is some vertex $v$ so that $\phi(v) \neq \phi(\pi(v))$. The distinguishing number of $G$, $D(G)$, is the smallest $c$ such that $G$ has a distinguishing $c$-labeling. We consider a compact version of Tyshkevich's graph decomposition theorem where trivial components are maximally combined to form a complete graph or a graph of isolated vertices. Suppose the compact canonical decomposition of $G$ is $G_{k} \circ G_{k-1} \circ \cdots \circ G_1 \circ G_0$. We prove that $\phi$ is a distinguishing labeling of $G$ if and only if $\phi$ is a distinguishing labeling of $G_i$ when restricted to $V(G_i)$ for $i = 0, \hdots, k$. Thus, $D(G) = \max \{D(G_i), i = 0, \hdots, k \}$. We then present an algorithm that computes the distinguishing number of a unigraph in linear time.
Given a square pencil $A+ \lambda B$, where $A$ and $B$ are complex matrices, we consider the problem of finding the singular pencil nearest to it in the Frobenius distance. This problem is known to be very difficult, and the few algorithms available in the literature can only deal efficiently with pencils of very small size. We show that the problem is equivalent to minimizing a certain objective function over the Riemannian manifold $SU(n) \times SU(n)$, where $SU(n)$ denotes the special unitary group. With minor modifications, the same approach extends to the case of finding a nearest singular pencil with a specified minimal index. This novel perspective is based on the generalized Schur form of pencils, and yields a competitive numerical method, by pairing it with an algorithm capable of doing optimization on a Riemannian manifold. We provide numerical experiments that show that the resulting method allows us to deal with pencils of much larger size than alternative techniques, yielding candidate minimizers of comparable or better quality. In the course of our analysis, we also obtain a number of new theoretical results related to the generalized Schur form of a (regular or singular) square pencil and to the minimal index of a singular square pencil whose nullity is $1$.
We introduce a new class of absorbing boundary conditions (ABCs) for the Helmholtz equation. The proposed ABCs can be derived from a certain simple class of perfectly matched layers using $L$ discrete layers and using the $Q_N$ Lagrange finite element in conjunction with the $N$-point Gauss-Legendre quadrature reduced integration rule. The proposed ABCs are classified by a tuple $(L,N)$, and achieve reflection error of order $O(R^{2LN})$ for some $R<1$. The new ABCs generalise the perfectly matched discrete layers proposed by Guddati and Lim [Int. J. Numer. Meth. Engng 66 (6) (2006) 949-977], including them as type $(L,1)$. An analysis of the proposed ABCs is performed motivated by the work of Ainsworth [J. Comput. Phys. 198 (1) (2004) 106-130]. The new ABCs facilitate numerical implementations of the Helmholtz problem with ABCs if $Q_N$ finite elements are used in the physical domain. Moreover, giving more insight, the analysis presented in this work potentially aids with developing ABCs in related areas.
Eigenvalue density generated by embedded Gaussian unitary ensemble with $k$-body interactions for two species (say $\mathbf{\pi}$ and $\mathbf{\nu}$) fermion systems is investigated by deriving formulas for the lowest six moments. Assumed in constructing this ensemble, called EGUE($k:\mathbf{\pi} \mathbf{\nu}$), is that the $\mathbf{\pi}$ fermions ($m_1$ in number) occupy $N_1$ number of degenerate single particle (sp) states and similarly $\mathbf{\nu}$ fermions ($m_2$ in number) in $N_2$ number of degenerate sp states. The Hamiltonian is assumed to be $k$-body preserving $(m_1,m_2)$. Formulas with finite $(N_1,N_2)$ corrections and asymptotic limit formulas both show that the eigenvalue density takes $q$-normal form with the $q$ parameter defined by the fourth moment. The EGUE($k:\mathbf{\pi} \mathbf{\nu}$) formalism and results are extended to two species boson systems. Results in this work show that the $q$-normal form of the eigenvalue density established only recently for identical fermion and boson systems extends to two species fermion and boson systems.
We consider a linear implicit-explicit (IMEX) time discretization of the Cahn-Hilliard equation with a source term, endowed with Dirichlet boundary conditions. For every time step small enough, we build an exponential attractor of the discrete-in-time dynamical system associated to the discretization. We prove that, as the time step tends to 0, this attractor converges for the symmmetric Hausdorff distance to an exponential attractor of the continuous-in-time dynamical system associated with the PDE. We also prove that the fractal dimension of the exponential attractor (and consequently, of the global attractor) is bounded by a constant independent of the time step. The results also apply to the classical Cahn-Hilliard equation with Neumann boundary conditions.
We introduce a new stochastic algorithm to locate the index-1 saddle points of a function $V:\mathbb R^d \to \mathbb R$, with $d$ possibly large. This algorithm can be seen as an equivalent of the stochastic gradient descent which is a natural stochastic process to locate local minima. It relies on two ingredients: (i) the concentration properties on index-1 saddle points of the first eigenmodes of the Witten Laplacian (associated with $V$) on $1$-forms and (ii) a probabilistic representation of a partial differential equation involving this differential operator. Numerical examples on simple molecular systems illustrate the efficacy of the proposed approach.
In this work, we establish the linear convergence estimate for the gradient descent involving the delay $\tau\in\mathbb{N}$ when the cost function is $\mu$-strongly convex and $L$-smooth. This result improves upon the well-known estimates in Arjevani et al. \cite{ASS} and Stich-Karmireddy \cite{SK} in the sense that it is non-ergodic and is still established in spite of weaker constraint of cost function. Also, the range of learning rate $\eta$ can be extended from $\eta\leq 1/(10L\tau)$ to $\eta\leq 1/(4L\tau)$ for $\tau =1$ and $\eta\leq 3/(10L\tau)$ for $\tau \geq 2$, where $L >0$ is the Lipschitz continuity constant of the gradient of cost function. In a further research, we show the linear convergence of cost function under the Polyak-{\L}ojasiewicz\,(PL) condition, for which the available choice of learning rate is further improved as $\eta\leq 9/(10L\tau)$ for the large delay $\tau$. Finally, some numerical experiments are provided in order to confirm the reliability of the analyzed results.
In this short note, we show that the higher-order derivatives of the adjugate matrix $\mbox{Adj}(z-A)$, are related to the nilpotent matrices and projections in the Jordan decomposition of the matrix $A$. These relations appear as a factorization of the derivative of the adjugate matrix as a product of factors related to the eigenvalues, nilpotent matrices and projectors. The novel relations are obtained using the Riesz projector and functional calculus. The results presented here can be considered to be a generalization of Thompson and McEnteggert's theorem relating the adjugate matrix to the orthogonal projection on the eigenspace of simple eigenvalues for symmetric matrices. They can also be seen as a complement to some earlier results by B. Parisse, M. Vaughan that relate derivatives of the adjugate matrix to the invariant subspaces associated with an eigenvalue. Our results can also be interpreted as a general eigenvector-eigenvalue identity. Many previous works have dealt with relations between the projectors on the eigenspaces and the derivatives of the adjugate matrix with the characteristic spaces but it seems that there is no explicit mention in the literature of the factorization of the higher-order derivatives of the adjugate matrix as a matrix multiplication involving nilpotent and projector matrices, which appear in the Jordan decomposition theorem.
For a state $\rho_{A_1^n B}$, we call a sequence of states $(\sigma_{A_1^k B}^{(k)})_{k=1}^n$ an approximation chain if for every $1 \leq k \leq n$, $\rho_{A_1^k B} \approx_\epsilon \sigma_{A_1^k B}^{(k)}$. In general, it is not possible to lower bound the smooth min-entropy of such a $\rho_{A_1^n B}$, in terms of the entropies of $\sigma_{A_1^k B}^{(k)}$ without incurring very large penalty factors. In this paper, we study such approximation chains under additional assumptions. We begin by proving a simple entropic triangle inequality, which allows us to bound the smooth min-entropy of a state in terms of the R\'enyi entropy of an arbitrary auxiliary state while taking into account the smooth max-relative entropy between the two. Using this triangle inequality, we create lower bounds for the smooth min-entropy of a state in terms of the entropies of its approximation chain in various scenarios. In particular, utilising this approach, we prove an approximate version of entropy accumulation and also provide a solution to the source correlation problem in quantum key distribution.
In this article, we study the inconsistency of systems of $\min-\rightarrow$ fuzzy relational equations. We give analytical formulas for computing the Chebyshev distances $\nabla = \inf_{d \in \mathcal{D}} \Vert \beta - d \Vert$ associated to systems of $\min-\rightarrow$ fuzzy relational equations of the form $\Gamma \Box_{\rightarrow}^{\min} x = \beta$, where $\rightarrow$ is a residual implicator among the G\"odel implication $\rightarrow_G$, the Goguen implication $\rightarrow_{GG}$ or Lukasiewicz's implication $\rightarrow_L$ and $\mathcal{D}$ is the set of second members of consistent systems defined with the same matrix $\Gamma$. The main preliminary result that allows us to obtain these formulas is that the Chebyshev distance $\nabla$ is the lower bound of the solutions of a vector inequality, whatever the residual implicator used. Finally, we show that, in the case of the $\min-\rightarrow_{G}$ system, the Chebyshev distance $\nabla$ may be an infimum, while it is always a minimum for $\min-\rightarrow_{GG}$ and $\min-\rightarrow_{L}$ systems.