亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Language models will inevitably err in situations with which they are unfamiliar. However, by effectively communicating uncertainties, they can still guide humans toward making sound decisions in those contexts. We demonstrate this idea by developing HEAR, a system that can successfully guide humans in simulated residential environments despite generating potentially inaccurate instructions. Diverging from systems that provide users with only the instructions they generate, HEAR warns users of potential errors in its instructions and suggests corrections. This rich uncertainty information effectively prevents misguidance and reduces the search space for users. Evaluation with 80 users shows that HEAR achieves a 13% increase in success rate and a 29% reduction in final location error distance compared to only presenting instructions to users. Interestingly, we find that offering users possibilities to explore, HEAR motivates them to make more attempts at the task, ultimately leading to a higher success rate. To our best knowledge, this work is the first to show the practical benefits of uncertainty communication in a long-horizon sequential decision-making problem.

相關內容

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

We propose and design recommendation systems that incentivize efficient exploration. Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions. The recommendation system presents each agent with actions and rewards from a subsequence of past agents, chosen ex ante. Thus, the agents engage in sequential social learning, moderated by these subsequences. We asymptotically attain optimal regret rate for exploration, using a flexible frequentist behavioral model and mitigating rationality and commitment assumptions inherent in prior work. We suggest three components of effective recommendation systems: independent focus groups, group aggregators, and interlaced information structures.

Recent advances in diffusion models have significantly improved the synthesis of materials, textures, and 3D shapes. By conditioning these models via text or images, users can guide the generation, reducing the time required to create digital assets. In this paper, we address the synthesis of structured, stationary patterns, where diffusion models are generally less reliable and, more importantly, less controllable. Our approach leverages the generative capabilities of diffusion models specifically adapted for the pattern domain. It enables users to exercise direct control over the synthesis by expanding a partially hand-drawn pattern into a larger design while preserving the structure and details of the input. To enhance pattern quality, we fine-tune an image-pretrained diffusion model on structured patterns using Low-Rank Adaptation (LoRA), apply a noise rolling technique to ensure tileability, and utilize a patch-based approach to facilitate the generation of large-scale assets. We demonstrate the effectiveness of our method through a comprehensive set of experiments, showing that it outperforms existing models in generating diverse, consistent patterns that respond directly to user input.

Unwanted vibrations stemming from the energy-optimized design of Delta robots pose a challenge in their operation, especially with respect to precise reference tracking. To improve tracking accuracy, this paper proposes an adaptive mismatch-compensated iterative learning controller based on input shaping techniques. We establish a dynamic model considering the electromechanical rigid-flexible coupling of the Delta robot, which integrates the permanent magnet synchronous motor. Using this model, we design an optimization-based input shaper, considering the natural frequency of the robot, which varies with the configuration. We proposed an iterative learning controller for the delta robot to improve tracking accuracy. Our iterative learning controller incorporates model mismatch where the mismatch approximated by a fuzzy logic structure. The convergence property of the proposed controller is proved using a Barrier Composite Energy Function, providing a guarantee that the tracking errors along the iteration axis converge to zero. Moreover, adaptive parameter update laws are designed to ensure convergence. Finally, we perform a series of high-fidelity simulations of the Delta robot using Simscape to demonstrate the effectiveness of the proposed control strategy.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司