亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In observational studies, unobserved confounding is a major barrier in isolating the average causal effect (ACE). In these scenarios, two main approaches are often used: confounder adjustment for causality (CAC) and instrumental variable analysis for causation (IVAC). Nevertheless, both are subject to untestable assumptions and, therefore, it may be unclear which assumption violation scenarios one method is superior in terms of mitigating inconsistency for the ACE. Although general guidelines exist, direct theoretical comparisons of the trade-offs between CAC and the IVAC assumptions are limited. Using ordinary least squares (OLS) for CAC and two-stage least squares (2SLS) for IVAC, we analytically compare the relative inconsistency for the ACE of each approach under a variety of assumption violation scenarios and discuss rules of thumb for practice. Additionally, a sensitivity framework is proposed to guide analysts in determining which approach may result in less inconsistency for estimating the ACE with a given dataset. We demonstrate our findings both through simulation and an application examining whether maternal stress during pregnancy affects a neonate's birthweight. The implications of our findings for causal inference practice are discussed, providing guidance for analysts for judging whether CAC or IVAC may be more appropriate for a given situation.

相關內容

Vision and Language Models (VLMs), such as CLIP, have enabled visual recognition of a potentially unlimited set of categories described by text prompts. However, for the best visual recognition performance, these models still require tuning to better fit the data distributions of the downstream tasks, in order to overcome the domain shift from the web-based pre-training data. Recently, it has been shown that it is possible to effectively tune VLMs without any paired data, and in particular to effectively improve VLMs visual recognition performance using text-only training data generated by Large Language Models (LLMs). In this paper, we dive deeper into this exciting text-only VLM training approach and explore ways it can be significantly further improved taking the specifics of the downstream task into account when sampling text data from LLMs. In particular, compared to the SOTA text-only VLM training approach, we demonstrate up to 8.4% performance improvement in (cross) domain-specific adaptation, up to 8.7% improvement in fine-grained recognition, and 3.1% overall average improvement in zero-shot classification compared to strong baselines.

The focus of this study is to investigate the impact of different initialization strategies for the weight matrix of Successor Features (SF) on learning efficiency and convergence in Reinforcement Learning (RL) agents. Using a grid-world paradigm, we compare the performance of RL agents, whose SF weight matrix is initialized with either an identity matrix, zero matrix, or a randomly generated matrix (using Xavier, He, or uniform distribution method). Our analysis revolves around evaluating metrics such as value error, step length, PCA of Successor Representation (SR) place field, and the distance of SR matrices between different agents. The results demonstrate that RL agents initialized with random matrices reach the optimal SR place field faster and showcase a quicker reduction in value error, pointing to more efficient learning. Furthermore, these random agents also exhibit a faster decrease in step length across larger grid-world environments. The study provides insights into the neurobiological interpretations of these results, their implications for understanding intelligence, and potential future research directions. These findings could have profound implications for the field of artificial intelligence, particularly in the design of learning algorithms.

Automatic speech recognition (ASR) systems have been shown to be vulnerable to adversarial examples (AEs). Recent success all assumes that users will not notice or disrupt the attack process despite the existence of music/noise-like sounds and spontaneous responses from voice assistants. Nonetheless, in practical user-present scenarios, user awareness may nullify existing attack attempts that launch unexpected sounds or ASR usage. In this paper, we seek to bridge the gap in existing research and extend the attack to user-present scenarios. We propose VRIFLE, an inaudible adversarial perturbation (IAP) attack via ultrasound delivery that can manipulate ASRs as a user speaks. The inherent differences between audible sounds and ultrasounds make IAP delivery face unprecedented challenges such as distortion, noise, and instability. In this regard, we design a novel ultrasonic transformation model to enhance the crafted perturbation to be physically effective and even survive long-distance delivery. We further enable VRIFLE's robustness by adopting a series of augmentation on user and real-world variations during the generation process. In this way, VRIFLE features an effective real-time manipulation of the ASR output from different distances and under any speech of users, with an alter-and-mute strategy that suppresses the impact of user disruption. Our extensive experiments in both digital and physical worlds verify VRIFLE's effectiveness under various configurations, robustness against six kinds of defenses, and universality in a targeted manner. We also show that VRIFLE can be delivered with a portable attack device and even everyday-life loudspeakers.

Objective: We aimed to fuse the outputs of different electrocardiogram-derived respiration (EDR) algorithms to create one EDR signal that is of higher quality. Methods: We viewed each EDR algorithm as a software sensor that recorded breathing activity from a different vantage point, identified high-quality software sensors based on the respiratory signal quality index, aligned the highest-quality EDRs with a phase synchronization technique based on the graph connection Laplacian, and finally fused those aligned, high-quality EDRs. We refer to the output as the sync-ensembled EDR signal. The proposed algorithm was evaluated on two large-scale databases of whole-night polysomnograms. We evaluated the performance of the proposed algorithm using three respiratory signals recorded from different hardware sensors, and compared it with other existing EDR algorithms. A sensitivity analysis was carried out for a total of five cases: fusion by taking the mean of EDR signals, and the four cases of EDR signal alignment without and with synchronization and without and with signal quality selection. Results: The sync-ensembled EDR algorithm outperforms existing EDR algorithms when evaluated by the synchronized correlation (-score), optimal transport (OT) distance, and average frequency (AF) score, all with statistical significance. The sensitivity analysis shows that the signal quality selection and EDR signal alignment are both critical for the performance, both with statistical significance. Conclusion: The sync-ensembled EDR provides robust respiratory information from electrocardiogram. Significance: Phase synchronization is not only theoretically rigorous but also practical to design a robust EDR.

The Mixture of Experts (MoE) is a widely known neural architecture where an ensemble of specialized sub-models optimizes overall performance with a constant computational cost. However, conventional MoEs pose challenges at scale due to the need to store all experts in memory. In this paper, we push MoE to the limit. We propose extremely parameter-efficient MoE by uniquely combining MoE architecture with lightweight experts.Our MoE architecture outperforms standard parameter-efficient fine-tuning (PEFT) methods and is on par with full fine-tuning by only updating the lightweight experts -- less than 1% of an 11B parameters model. Furthermore, our method generalizes to unseen tasks as it does not depend on any prior task knowledge. Our research underscores the versatility of the mixture of experts architecture, showcasing its ability to deliver robust performance even when subjected to rigorous parameter constraints. Our code used in all the experiments is publicly available here: //github.com/for-ai/parameter-efficient-moe.

Most real-world classification tasks suffer from label noise to some extent. Such noise in the data adversely affects the generalization error of learned models and complicates the evaluation of noise-handling methods, as their performance cannot be accurately measured without clean labels. In label noise research, typically either noisy or incomplex simulated data are accepted as a baseline, into which additional noise with known properties is injected. In this paper, we propose SYNLABEL, a framework that aims to improve upon the aforementioned methodologies. It allows for creating a noiseless dataset informed by real data, by either pre-specifying or learning a function and defining it as the ground truth function from which labels are generated. Furthermore, by resampling a number of values for selected features in the function domain, evaluating the function and aggregating the resulting labels, each data point can be assigned a soft label or label distribution. Such distributions allow for direct injection and quantification of label noise. The generated datasets serve as a clean baseline of adjustable complexity into which different types of noise may be introduced. We illustrate how the framework can be applied, how it enables quantification of label noise and how it improves over existing methodologies.

We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司