亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coarse-grained reconfigurable arrays (CGRAs), or dataflow architectures in general, have gained attention in recent years due to their promising power efficiency compared to traditional von Neumann architectures. To program these architectures using ordinary languages such as C, a dataflow compiler must transform the original sequential, imperative program into an equivalent dataflow graph, composed of dataflow operators running in parallel. This transformation is challenging since the asynchronous nature of dataflow graphs allows out-of-order execution of operators, leading to behaviors not present in the original imperative programs. We address this challenge by developing a translation validation technique for dataflow compilers to ensure that the dataflow program has the same behavior as the original imperative program on all possible inputs and schedules of execution. We apply this method to a state-of-the-art dataflow compiler targeting the RipTide CGRA architecture. Our tool uncovers 7 compiler bugs where the compiler outputs incorrect dataflow graphs, including a data race that is otherwise hard to discover via testing. After repairing these bugs, our tool verifies the correct compilation of all programs in the RipTide benchmark suite.

相關內容

編(bian)(bian)譯器(Compiler),是一(yi)種計(ji)算機程(cheng)序,它會(hui)將用某(mou)種編(bian)(bian)程(cheng)語(yu)言寫成的源代碼(原始語(yu)言),轉換成另一(yi)種編(bian)(bian)程(cheng)語(yu)言(目標語(yu)言)。

In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.

The advances of deep learning (DL) have paved the way for automatic software vulnerability repair approaches, which effectively learn the mapping from the vulnerable code to the fixed code. Nevertheless, existing DL-based vulnerability repair methods face notable limitations: 1) they struggle to handle lengthy vulnerable code, 2) they treat code as natural language texts, neglecting its inherent structure, and 3) they do not tap into the valuable expert knowledge present in the expert system. To address this, we propose VulMaster, a Transformer-based neural network model that excels at generating vulnerability repairs by comprehensively understanding the entire vulnerable code, irrespective of its length. This model also integrates diverse information, encompassing vulnerable code structures and expert knowledge from the CWE system. We evaluated VulMaster on a real-world C/C++ vulnerability repair dataset comprising 1,754 projects with 5,800 vulnerable functions. The experimental results demonstrated that VulMaster exhibits substantial improvements compared to the learning-based state-of-the-art vulnerability repair approach. Specifically, VulMaster improves the EM, BLEU, and CodeBLEU scores from 10.2\% to 20.0\%, 21.3\% to 29.3\%, and 32.5\% to 40.9\%, respectively.

The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.

In recent years, more people have seen their work depend on data manipulation tasks. However, many of these users do not have the background in programming required to write complex programs, particularly SQL queries. One way of helping these users is automatically synthesizing the SQL query given a small set of examples. Several program synthesizers for SQL have been recently proposed, but they do not leverage multicore architectures. This paper proposes CUBES, a parallel program synthesizer for the domain of SQL queries using input-output examples. Since input-output examples are an under-specification of the desired SQL query, sometimes, the synthesized query does not match the user's intent. CUBES incorporates a new disambiguation procedure based on fuzzing techniques that interacts with the user and increases the confidence that the returned query matches the user intent. We perform an extensive evaluation on around 4000 SQL queries from different domains. Experimental results show that our sequential version can solve more instances than other state-of-the-art SQL synthesizers. Moreover, the parallel approach can scale up to 16 processes with super-linear speedups for many hard instances. Our disambiguation approach is critical to achieving an accuracy of around 60%, significantly larger than other SQL synthesizers.

In recent years, the foundation models have swept the computer vision field and facilitated the development of various tasks within different modalities. However, it remains an open question on how to design an infrared foundation model. In this paper, we propose InfMAE, a foundation model in infrared modality. We release an infrared dataset, called Inf30 to address the problem of lacking large-scale data for self-supervised learning in the infrared vision community. Besides, we design an information-aware masking strategy, which is suitable for infrared images. This masking strategy allows for a greater emphasis on the regions with richer information in infrared images during the self-supervised learning process, which is conducive to learning the generalized representation. In addition, we adopt a multi-scale encoder to enhance the performance of the pre-trained encoders in downstream tasks. Finally, based on the fact that infrared images do not have a lot of details and texture information, we design an infrared decoder module, which further improves the performance of downstream tasks. Extensive experiments show that our proposed method InfMAE outperforms other supervised methods and self-supervised learning methods in three downstream tasks. Our code will be made public at //github.com/liufangcen/InfMAE.

Data sonification-mapping data variables to auditory variables, such as pitch or volume-is used for data accessibility, scientific exploration, and data-driven art (e.g., museum exhibitions) among others. While a substantial amount of research has been made on effective and intuitive sonification design, software support is not commensurate, limiting researchers from fully exploring its capabilities. We contribute Erie, a declarative grammar for data sonification, that enables abstractly expressing auditory mappings. Erie supports specifying extensible tone designs (e.g., periodic wave, sampling, frequency/amplitude modulation synthesizers), various encoding channels, auditory legends, and composition options like sequencing and overlaying. Using standard Web Audio and Web Speech APIs, we provide an Erie compiler for web environments. We demonstrate the expressiveness and feasibility of Erie by replicating research prototypes presented by prior work and provide a sonification design gallery. We discuss future steps to extend Erie toward other audio computing environments and support interactive data sonification.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司