亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This demo paper examines the susceptibility of Federated Learning (FL) systems to targeted data poisoning attacks, presenting a novel system for visualizing and mitigating such threats. We simulate targeted data poisoning attacks via label flipping and analyze the impact on model performance, employing a five-component system that includes Simulation and Data Generation, Data Collection and Upload, User-friendly Interface, Analysis and Insight, and Advisory System. Observations from three demo modules: label manipulation, attack timing, and malicious attack availability, and two analysis components: utility and analytical behavior of local model updates highlight the risks to system integrity and offer insight into the resilience of FL systems. The demo is available at //github.com/CathyXueqingZhang/DataPoisoningVis.

相關內容

聯(lian)邦學習(xi)(Federated Learning)是一種(zhong)新(xin)興的(de)人(ren)工(gong)智能(neng)(neng)基礎(chu)技術,在(zai)(zai) 2016 年(nian)由谷歌最先提(ti)出,原(yuan)本用于解決安卓手機(ji)終端用戶在(zai)(zai)本地更(geng)新(xin)模(mo)型的(de)問題,其設(she)計(ji)目標是在(zai)(zai)保(bao)(bao)障大數(shu)據交換時的(de)信(xin)息安全、保(bao)(bao)護終端數(shu)據和個人(ren)數(shu)據隱私(si)、保(bao)(bao)證合法(fa)合規的(de)前提(ti)下(xia),在(zai)(zai)多參與(yu)方或多計(ji)算(suan)(suan)(suan)結點之(zhi)間(jian)開展高(gao)效率的(de)機(ji)器學習(xi)。其中,聯(lian)邦學習(xi)可使用的(de)機(ji)器學習(xi)算(suan)(suan)(suan)法(fa)不局限于神(shen)經網絡(luo),還包括(kuo)隨機(ji)森林等重要(yao)算(suan)(suan)(suan)法(fa)。聯(lian)邦學習(xi)有望成為下(xia)一代(dai)人(ren)工(gong)智能(neng)(neng)協同算(suan)(suan)(suan)法(fa)和協作網絡(luo)的(de)基礎(chu)。

The development of deep learning-based models for the compression of hyperspectral images (HSIs) has recently attracted great attention in remote sensing due to the sharp growing of hyperspectral data archives. Most of the existing models achieve either spectral or spatial compression, and do not jointly consider the spatio-spectral redundancies present in HSIs. To address this problem, in this paper we focus our attention on the High Fidelity Compression (HiFiC) model (which is proven to be highly effective for spatial compression problems) and adapt it to perform spatio-spectral compression of HSIs. In detail, we introduce two new models: i) HiFiC using Squeeze and Excitation (SE) blocks (denoted as HiFiC$_{SE}$); and ii) HiFiC with 3D convolutions (denoted as HiFiC$_{3D}$) in the framework of compression of HSIs. We analyze the effectiveness of HiFiC$_{SE}$ and HiFiC$_{3D}$ in compressing the spatio-spectral redundancies with channel attention and inter-dependency analysis. Experimental results show the efficacy of the proposed models in performing spatio-spectral compression, while reconstructing images at reduced bitrates with higher reconstruction quality. The code of the proposed models is publicly available at //git.tu-berlin.de/rsim/HSI-SSC .

We present MST-MIXER - a novel video dialog model operating over a generic multi-modal state tracking scheme. Current models that claim to perform multi-modal state tracking fall short of two major aspects: (1) They either track only one modality (mostly the visual input) or (2) they target synthetic datasets that do not reflect the complexity of real-world in the wild scenarios. Our model addresses these two limitations in an attempt to close this crucial research gap. Specifically, MST-MIXER first tracks the most important constituents of each input modality. Then, it predicts the missing underlying structure of the selected constituents of each modality by learning local latent graphs using a novel multi-modal graph structure learning method. Subsequently, the learned local graphs and features are parsed together to form a global graph operating on the mix of all modalities which further refines its structure and node embeddings. Finally, the fine-grained graph node features are used to enhance the hidden states of the backbone Vision-Language Model (VLM). MST-MIXER achieves new state-of-the-art results on five challenging benchmarks.

We introduce the Emergent Language Corpus Collection (ELCC): a collection of corpora collected from open source implementations of emergent communication systems across the literature. These systems include a variety of signalling game environments as well as more complex tasks like a social deduction game and embodied navigation. Each corpus is annotated with metadata describing the characteristics of the source system as well as a suite of analyses of the corpus (e.g., size, entropy, average message length). Currently, research studying emergent languages requires directly running different systems which takes time away from actual analyses of such languages, limits the variety of languages that are studied, and presents a barrier to entry for researchers without a background in deep learning. The availability of a substantial collection of well-documented emergent language corpora, then, will enable new directions of research which focus their purview on the properties of emergent languages themselves rather than on experimental apparatus.

Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks, including question answering and dialogue systems. However, a major drawback of LLMs is the issue of hallucination, where they generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences. In this paper, we propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers. RelD is trained on the constructed RelQA, a bilingual question-answering dialogue dataset along with answers generated by LLMs and a comprehensive set of metrics. Our experimental results demonstrate that the proposed RelD successfully detects hallucination in the answers generated by diverse LLMs. Moreover, it performs well in distinguishing hallucination in LLMs' generated answers from both in-distribution and out-of-distribution datasets. Additionally, we also conduct a thorough analysis of the types of hallucinations that occur and present valuable insights. This research significantly contributes to the detection of reliable answers generated by LLMs and holds noteworthy implications for mitigating hallucination in the future work.

This work aims to advance sound event detection (SED) research by presenting a new large language model (LLM)-powered dataset namely wild domestic environment sound event detection (WildDESED). It is crafted as an extension to the original DESED dataset to reflect diverse acoustic variability and complex noises in home settings. We leveraged LLMs to generate eight different domestic scenarios based on target sound categories of the DESED dataset. Then we enriched the scenarios with a carefully tailored mixture of noises selected from AudioSet and ensured no overlap with target sound. We consider widely popular convolutional neural recurrent network to study WildDESED dataset, which depicts its challenging nature. We then apply curriculum learning by gradually increasing noise complexity to enhance the model's generalization capabilities across various noise levels. Our results with this approach show improvements within the noisy environment, validating the effectiveness on the WildDESED dataset promoting noise-robust SED advancements.

With the rapid advancements in Multimodal Large Language Models (MLLMs), securing these models against malicious inputs while aligning them with human values has emerged as a critical challenge. In this paper, we investigate an important and unexplored question of whether techniques that successfully jailbreak Large Language Models (LLMs) can be equally effective in jailbreaking MLLMs. To explore this issue, we introduce JailBreakV-28K, a pioneering benchmark designed to assess the transferability of LLM jailbreak techniques to MLLMs, thereby evaluating the robustness of MLLMs against diverse jailbreak attacks. Utilizing a dataset of 2, 000 malicious queries that is also proposed in this paper, we generate 20, 000 text-based jailbreak prompts using advanced jailbreak attacks on LLMs, alongside 8, 000 image-based jailbreak inputs from recent MLLMs jailbreak attacks, our comprehensive dataset includes 28, 000 test cases across a spectrum of adversarial scenarios. Our evaluation of 10 open-source MLLMs reveals a notably high Attack Success Rate (ASR) for attacks transferred from LLMs, highlighting a critical vulnerability in MLLMs that stems from their text-processing capabilities. Our findings underscore the urgent need for future research to address alignment vulnerabilities in MLLMs from both textual and visual inputs.

We present OpenVNA, an open-source framework designed for analyzing the behavior of multimodal language understanding systems under noisy conditions. OpenVNA serves as an intuitive toolkit tailored for researchers, facilitating convenience batch-level robustness evaluation and on-the-fly instance-level demonstration. It primarily features a benchmark Python library for assessing global model robustness, offering high flexibility and extensibility, thereby enabling customization with user-defined noise types and models. Additionally, a GUI-based interface has been developed to intuitively analyze local model behavior. In this paper, we delineate the design principles and utilization of the created library and GUI-based web platform. Currently, OpenVNA is publicly accessible at \url{//github.com/thuiar/OpenVNA}, with a demonstration video available at \url{//youtu.be/0Z9cW7RGct4}.

Advances in Artificial Intelligence (AI) are helping tackle a growing number of societal challenges, demonstrating technology's increasing capability to address complex issues, including those outlined in the United Nations (UN) Sustainable Development Goals (SDGs). Despite global efforts, 80 percent of SDG targets have deviated, stalled, or regressed, and only 15 percent are on track as of 2023, illustrating the urgency of accelerating efforts to meet the goals by 2030. We draw on Google's internal and collaborative research, technical work, and social impact initiatives to show AI's potential to accelerate action on the SDGs and make substantive progress to help address humanity's most pressing challenges. The paper highlights AI capabilities (including computer vision, generative AI, natural language processing, and multimodal AI) and showcases how AI is altering how we approach problem-solving across all 17 SDGs through use cases, with a spotlight on AI-powered innovation in health, education, and climate. We then offer insights on AI development and deployment to drive bold and responsible innovation, enhance impact, close the accessibility gap, and ensure that everyone, everywhere, can benefit from AI.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

北京阿比特科技有限公司