亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most feedforward convolutional neural networks spend roughly the same efforts for each pixel. Yet human visual recognition is an interaction between eye movements and spatial attention, which we will have several glimpses of an object in different regions. Inspired by this observation, we propose an end-to-end trainable Multi-Glimpse Network (MGNet) which aims to tackle the challenges of high computation and the lack of robustness based on recurrent downsampled attention mechanism. Specifically, MGNet sequentially selects task-relevant regions of an image to focus on and then adaptively combines all collected information for the final prediction. MGNet expresses strong resistance against adversarial attacks and common corruptions with less computation. Also, MGNet is inherently more interpretable as it explicitly informs us where it focuses during each iteration. Our experiments on ImageNet100 demonstrate the potential of recurrent downsampled attention mechanisms to improve a single feedforward manner. For example, MGNet improves 4.76% accuracy on average in common corruptions with only 36.9% computational cost. Moreover, while the baseline incurs an accuracy drop to 7.6%, MGNet manages to maintain 44.2% accuracy in the same PGD attack strength with ResNet-50 backbone. Our code is available at //github.com/siahuat0727/MGNet.

相關內容

機器學習系統設計系統評估標準

Conventional CNNs-based dehazing models suffer from two essential issues: the dehazing framework (limited in interpretability) and the convolution layers (content-independent and ineffective to learn long-range dependency information). In this paper, firstly, we propose a new complementary feature enhanced framework, in which the complementary features are learned by several complementary subtasks and then together serve to boost the performance of the primary task. One of the prominent advantages of the new framework is that the purposively chosen complementary tasks can focus on learning weakly dependent complementary features, avoiding repetitive and ineffective learning of the networks. We design a new dehazing network based on such a framework. Specifically, we select the intrinsic image decomposition as the complementary tasks, where the reflectance and shading prediction subtasks are used to extract the color-wise and texture-wise complementary features. To effectively aggregate these complementary features, we propose a complementary features selection module (CFSM) to select the more useful features for image dehazing. Furthermore, we introduce a new version of vision transformer block, named Hybrid Local-Global Vision Transformer (HyLoG-ViT), and incorporate it within our dehazing networks. The HyLoG-ViT block consists of the local and the global vision transformer paths used to capture local and global dependencies. As a result, the HyLoG-ViT introduces locality in the networks and captures the global and long-range dependencies. Extensive experiments on homogeneous, non-homogeneous, and nighttime dehazing tasks reveal that the proposed dehazing network can achieve comparable or even better performance than CNNs-based dehazing models.

Multi-label image recognition is a challenging computer vision task of practical use. Progresses in this area, however, are often characterized by complicated methods, heavy computations, and lack of intuitive explanations. To effectively capture different spatial regions occupied by objects from different categories, we propose an embarrassingly simple module, named class-specific residual attention (CSRA). CSRA generates class-specific features for every category by proposing a simple spatial attention score, and then combines it with the class-agnostic average pooling feature. CSRA achieves state-of-the-art results on multilabel recognition, and at the same time is much simpler than them. Furthermore, with only 4 lines of code, CSRA also leads to consistent improvement across many diverse pretrained models and datasets without any extra training. CSRA is both easy to implement and light in computations, which also enjoys intuitive explanations and visualizations.

The task of person re-identification (ReID) has attracted growing attention in recent years with improving performance but lack of focus on real-world applications. Most state of the art methods use large pre-trained models, e.g., ResNet50 (~25M parameters), as their backbone, which makes it tedious to explore different architecture modifications. In this study, we focus on small-sized randomly initialized models which enable us to easily introduce network and training modifications suitable for person ReID public datasets and real-world setups. We show the robustness of our network and training improvements by outperforming state of the art results in terms of rank-1 accuracy and mAP on Market1501 (96.2, 89.7) and DukeMTMC (89.8, 80.3) with only 6.4M parameters and without using re-ranking. Finally, we show the applicability of the proposed ReID network for multi-object tracking.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

Feature maps in deep neural network generally contain different semantics. Existing methods often omit their characteristics that may lead to sub-optimal results. In this paper, we propose a novel end-to-end deep saliency network which could effectively utilize multi-scale feature maps according to their characteristics. Shallow layers often contain more local information, and deep layers have advantages in global semantics. Therefore, the network generates elaborate saliency maps by enhancing local and global information of feature maps in different layers. On one hand, local information of shallow layers is enhanced by a recurrent structure which shared convolution kernel at different time steps. On the other hand, global information of deep layers is utilized by a self-attention module, which generates different attention weights for salient objects and backgrounds thus achieve better performance. Experimental results on four widely used datasets demonstrate that our method has advantages in performance over existing algorithms.

Recently, much advance has been made in image captioning, and an encoder-decoder framework has been adopted by all the state-of-the-art models. Under this framework, an input image is encoded by a convolutional neural network (CNN) and then translated into natural language with a recurrent neural network (RNN). The existing models counting on this framework merely employ one kind of CNNs, e.g., ResNet or Inception-X, which describe image contents from only one specific view point. Thus, the semantic meaning of an input image cannot be comprehensively understood, which restricts the performance of captioning. In this paper, in order to exploit the complementary information from multiple encoders, we propose a novel Recurrent Fusion Network (RFNet) for tackling image captioning. The fusion process in our model can exploit the interactions among the outputs of the image encoders and then generate new compact yet informative representations for the decoder. Experiments on the MSCOCO dataset demonstrate the effectiveness of our proposed RFNet, which sets a new state-of-the-art for image captioning.

Person Re-Identification (ReID) requires comparing two images of person captured under different conditions. Existing work based on neural networks often computes the similarity of feature maps from one single convolutional layer. In this work, we propose an efficient, end-to-end fully convolutional Siamese network that computes the similarities at multiple levels. We demonstrate that multi-level similarity can improve the accuracy considerably using low-complexity network structures in ReID problem. Specifically, first, we use several convolutional layers to extract the features of two input images. Then, we propose Convolution Similarity Network to compute the similarity score maps for the inputs. We use spatial transformer networks (STNs) to determine spatial attention. We propose to apply efficient depth-wise convolution to compute the similarity. The proposed Convolution Similarity Networks can be inserted into different convolutional layers to extract visual similarities at different levels. Furthermore, we use an improved ranking loss to further improve the performance. Our work is the first to propose to compute visual similarities at low, middle and high levels for ReID. With extensive experiments and analysis, we demonstrate that our system, compact yet effective, can achieve competitive results with much smaller model size and computational complexity.

Typical person re-identification (ReID) methods usually describe each pedestrian with a single feature vector and match them in a task-specific metric space. However, the methods based on a single feature vector are not sufficient enough to overcome visual ambiguity, which frequently occurs in real scenario. In this paper, we propose a novel end-to-end trainable framework, called Dual ATtention Matching network (DuATM), to learn context-aware feature sequences and perform attentive sequence comparison simultaneously. The core component of our DuATM framework is a dual attention mechanism, in which both intra-sequence and inter-sequence attention strategies are used for feature refinement and feature-pair alignment, respectively. Thus, detailed visual cues contained in the intermediate feature sequences can be automatically exploited and properly compared. We train the proposed DuATM network as a siamese network via a triplet loss assisted with a de-correlation loss and a cross-entropy loss. We conduct extensive experiments on both image and video based ReID benchmark datasets. Experimental results demonstrate the significant advantages of our approach compared to the state-of-the-art methods.

北京阿比特科技有限公司