亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Climate change (CC) has attracted increasing attention in NLP in recent years. However, detecting the stance on CC in multimodal data is understudied and remains challenging due to a lack of reliable datasets. To improve the understanding of public opinions and communication strategies, this paper presents MultiClimate, the first open-source manually-annotated stance detection dataset with $100$ CC-related YouTube videos and $4,209$ frame-transcript pairs. We deploy state-of-the-art vision and language models, as well as multimodal models for MultiClimate stance detection. Results show that text-only BERT significantly outperforms image-only ResNet50 and ViT. Combining both modalities achieves state-of-the-art, $0.747$/$0.749$ in accuracy/F1. Our 100M-sized fusion models also beat CLIP and BLIP, as well as the much larger 9B-sized multimodal IDEFICS and text-only Llama3 and Gemma2, indicating that multimodal stance detection remains challenging for large language models. Our code, dataset, as well as supplementary materials, are available at //github.com/werywjw/MultiClimate.

相關內容

Large language models (LLMs) often fail to synthesize information from their context to generate an accurate response. This renders them unreliable in knowledge intensive settings where reliability of the output is key. A critical component for reliable LLMs is the integration of a robust fact-checking system that can detect hallucinations across various formats. While several open-access fact-checking models are available, their functionality is often limited to specific tasks, such as grounded question-answering or entailment verification, and they perform less effectively in conversational settings. On the other hand, closed-access models like GPT-4 and Claude offer greater flexibility across different contexts, including grounded dialogue verification, but are hindered by high costs and latency. In this work, we introduce VERITAS, a family of hallucination detection models designed to operate flexibly across diverse contexts while minimizing latency and costs. VERITAS achieves state-of-the-art results considering average performance on all major hallucination detection benchmarks, with $10\%$ increase in average performance when compared to similar-sized models and get close to the performance of GPT4 turbo with LLM-as-a-judge setting.

Large Language Models (LLMs) are being used for a wide variety of tasks. While they are capable of generating human-like responses, they can also produce undesirable output including potentially harmful information, racist or sexist language, and hallucinations. Alignment methods are designed to reduce such undesirable outputs via techniques such as fine-tuning, prompt engineering, and representation engineering. However, existing methods face several challenges: some require costly fine-tuning for every alignment task; some do not adequately remove undesirable concepts, failing alignment; some remove benign concepts, lowering the linguistic capabilities of LLMs. To address these issues, we propose Parsimonious Concept Engineering (PaCE), a novel activation engineering framework for alignment. First, to sufficiently model the concepts, we construct a large-scale concept dictionary in the activation space, in which each atom corresponds to a semantic concept. Given any alignment task, we instruct a concept partitioner to efficiently annotate the concepts as benign or undesirable. Then, at inference time, we decompose the LLM activations along the concept dictionary via sparse coding, to accurately represent the activations as linear combinations of benign and undesirable components. By removing the latter ones from the activations, we reorient the behavior of the LLM towards the alignment goal. We conduct experiments on tasks such as response detoxification, faithfulness enhancement, and sentiment revising, and show that PaCE achieves state-of-the-art alignment performance while maintaining linguistic capabilities.

Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at //github.com/shenao-zhang/SELM.

Advanced Persistent Threats (APTs) are continuously evolving, leveraging their stealthiness and persistence to put increasing pressure on current provenance-based Intrusion Detection Systems (IDS). This evolution exposes several critical issues: (1) The dense interaction between malicious and benign nodes within provenance graphs introduces neighbor noise, hindering effective detection; (2) The complex prediction mechanisms of existing APTs detection models lead to the insufficient utilization of prior knowledge embedded in the data; (3) The high computational cost makes detection impractical. To address these challenges, we propose Vodka, a lightweight threat detection system built on a knowledge distillation framework, capable of node-level detection within audit log provenance graphs. Specifically, Vodka applies graph Laplacian regularization to reduce neighbor noise, obtaining smoothed and denoised graph signals. Subsequently, Vodka employs a teacher model based on GNNs to extract knowledge, which is then distilled into a lightweight student model. The student model is designed as a trainable combination of a feature transformation module and a personalized PageRank random walk label propagation module, with the former capturing feature knowledge and the latter learning label and structural knowledge. After distillation, the student model benefits from the knowledge of the teacher model to perform precise threat detection. Finally, Vodka reconstructs attack paths from anomalous nodes, providing insight into the attackers' strategies. We evaluate Vodka through extensive experiments on three public datasets and compare its performance against several state-of-the-art IDS solutions. The results demonstrate that Vodka achieves outstanding detection accuracy across all scenarios and the detection time is 1.4 to 5.2 times faster than the current state-of-the-art methods.

Alongside the rapid development of Large Language Models (LLMs), there has been a notable increase in efforts to integrate LLM techniques in information retrieval (IR) and search engines (SE). Recently, an additional post-ranking stage is suggested in SE to enhance user satisfaction in practical applications. Nevertheless, research dedicated to enhancing the post-ranking stage through LLMs remains largely unexplored. In this study, we introduce a novel paradigm named Large Language Models for Post-Ranking in search engine (LLM4PR), which leverages the capabilities of LLMs to accomplish the post-ranking task in SE. Concretely, a Query-Instructed Adapter (QIA) module is designed to derive the user/item representation vectors by incorporating their heterogeneous features. A feature adaptation step is further introduced to align the semantics of user/item representations with the LLM. Finally, the LLM4PR integrates a learning to post-rank step, leveraging both a main task and an auxiliary task to fine-tune the model to adapt the post-ranking task. Experiment studies demonstrate that the proposed framework leads to significant improvements and exhibits state-of-the-art performance compared with other alternatives.

Since the rapid development of Large Language Models (LLMs) has achieved remarkable success, understanding and rectifying their internal complex mechanisms has become an urgent issue. Recent research has attempted to interpret their behaviors through the lens of inner representation. However, developing practical and efficient methods for applying these representations for general and flexible model editing remains challenging. In this work, we explore how to leverage insights from representation engineering to guide the editing of LLMs by deploying a representation sensor as an editing oracle. We first identify the importance of a robust and reliable sensor during editing, then propose an Adversarial Representation Engineering (ARE) framework to provide a unified and interpretable approach for conceptual model editing without compromising baseline performance. Experiments on multiple tasks demonstrate the effectiveness of ARE in various model editing scenarios. Our code and data are available at //github.com/Zhang-Yihao/Adversarial-Representation-Engineering.

The recent success of Vision Transformers has generated significant interest in attention mechanisms and transformer architectures. Although existing methods have proposed spiking self-attention mechanisms compatible with spiking neural networks, they often face challenges in effective deployment on current neuromorphic platforms. This paper introduces a novel model that combines vision transformers with the Locally Competitive Algorithm (LCA) to facilitate efficient neuromorphic deployment. Our experiments show that ViT-LCA achieves higher accuracy on ImageNet-1K dataset while consuming significantly less energy than other spiking vision transformer counterparts. Furthermore, ViT-LCA's neuromorphic-friendly design allows for more direct mapping onto current neuromorphic architectures.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

北京阿比特科技有限公司