A growing number of products use layer 2 solutions to expand the capabilities of primary blockchains like Ethereum, where computation is off-loaded from the root chain, and the results are published to it in bulk. Those include optimistic and zero-knowledge rollups, information oracles, and app-specific chains. This work presents an analysis of layer 2 blockchain strategies determining the optimal times for publishing transactions on the root chain. There is a trade-off between waiting for a better layer 1 gas price and the urgency to finalize layer 2 transactions. We present a model for the problem that captures this trade-off, generalizing previous works, and we analyze the properties of optimal publishing strategies. We show that such optimal strategies hold a computable simple form for a large class of cost functions.
Since the creation of Bitcoin 15 years ago, there has been an explosion in the number of permissionless blockchains. Each of these blockchains provides an open ledger that anyone can read from and write to. In this multi-chain world, an important question emerges: how can we build a more secure overlay blockchain by reading from and writing to a given set of blockchains? Drawing an analogy with switching circuits, we approach the problem by defining two basic compositional operations between blockchains, serial and triangular compositions, and use these operations as building blocks to construct general overlay blockchains. Under the partially synchronous setting, we have the following results: 1) the serial composition, between two blockchains, yields an overlay blockchain that is safe if at least one of the two underlay blockchains is safe and that is live if both underlay blockchains are live; 2) the triangular composition between three blockchains, akin to parallel composition of switching circuits, yields an overlay blockchain that is safe if all underlay blockchains are safe and that is live if at least half of them are live; 3) repeated composition of these two basic operations can yield all possible tradeoffs of safety and liveness for an overlay blockchain built on arbitrary number of underlay chains. The results are also extended to the synchronous setting.
In credence goods markets such as health care or repair services, consumers rely on experts with superior information to adequately diagnose and treat them. Experts, however, are constrained in their diagnostic abilities, which hurts market efficiency and consumer welfare. Technological breakthroughs that substitute or complement expert judgments have the potential to alleviate consumer mistreatment. This article studies how competitive experts adopt novel diagnostic technologies when skills are heterogeneously distributed and obfuscated to consumers. We differentiate between novel technologies that increase expert abilities, and algorithmic decision aids that complement expert judgments, but do not affect an expert's personal diagnostic precision. We show that high-ability experts may be incentivized to forego the decision aid in order to escape a pooling equilibrium by differentiating themselves from low-ability experts. Results from an online experiment support our hypothesis, showing that high-ability experts are significantly less likely than low-ability experts to invest into an algorithmic decision aid. Furthermore, we document pervasive under-investments, and no effect on expert honesty.
Language models (LMs) have already demonstrated remarkable abilities in understanding and generating both natural and formal language. Despite these advances, their integration with real-world environments such as large-scale knowledge bases (KBs) remains an underdeveloped area, affecting applications such as semantic parsing and indulging in "hallucinated" information. This paper is an experimental investigation aimed at uncovering the robustness challenges that LMs encounter when tasked with knowledge base question answering (KBQA). The investigation covers scenarios with inconsistent data distribution between training and inference, such as generalization to unseen domains, adaptation to various language variations, and transferability across different datasets. Our comprehensive experiments reveal that even when employed with our proposed data augmentation techniques, advanced small and large language models exhibit poor performance in various dimensions. While the LM is a promising technology, the robustness of the current form in dealing with complex environments is fragile and of limited practicality because of the data distribution issue. This calls for future research on data collection and LM learning paradims.
The performance of Markov chain Monte Carlo samplers strongly depends on the properties of the target distribution such as its covariance structure, the location of its probability mass and its tail behavior. We explore the use of bijective affine transformations of the sample space to improve the properties of the target distribution and thereby the performance of samplers running in the transformed space. In particular, we propose a flexible and user-friendly scheme for adaptively learning the affine transformation during sampling. Moreover, the combination of our scheme with Gibbsian polar slice sampling is shown to produce samples of high quality at comparatively low computational cost in several settings based on real-world data.
With the booming popularity of smartphones, threats related to these devices are increasingly on the rise. Smishing, a combination of SMS (Short Message Service) and phishing has emerged as a treacherous cyber threat used by malicious actors to deceive users, aiming to steal sensitive information, money or install malware on their mobile devices. Despite the increase in smishing attacks in recent years, there are very few studies aimed at understanding the factors that contribute to a user's ability to differentiate real from fake messages. To address this gap in knowledge, we have conducted an online survey on smishing detection with 214 participants. In this study, we presented them with 16 SMS screenshots and evaluated how different factors affect their decision making process in smishing detection. Next, we conducted a follow-up survey to garner information on the participants' security attitudes, behavior and knowledge. Our results highlighted that attention and security behavioral scores had a significant impact on participants' accuracy in identifying smishing messages. Interestingly, we found that participants had more difficulty identifying real messages from fake ones, with an accuracy of 65.6% with fake messages and 44.6% with real messages. Our study is crucial in developing proactive strategies to encounter and mitigate smishing attacks. By understanding what factors influence smishing detection, we aim to bolster users' resilience against such threats and create a safer digital environment for all.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.