亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Instrumental variables (IVs) provide a powerful strategy for identifying causal effects in the presence of unobservable confounders. Within the nonparametric setting (NPIV), recent methods have been based on nonlinear generalizations of Two-Stage Least Squares and on minimax formulations derived from moment conditions or duality. In a novel direction, we show how to formulate a functional stochastic gradient descent algorithm to tackle NPIV regression by directly minimizing the populational risk. We provide theoretical support in the form of bounds on the excess risk, and conduct numerical experiments showcasing our method's superior stability and competitive performance relative to current state-of-the-art alternatives. This algorithm enables flexible estimator choices, such as neural networks or kernel based methods, as well as non-quadratic loss functions, which may be suitable for structural equations beyond the setting of continuous outcomes and additive noise. Finally, we demonstrate this flexibility of our framework by presenting how it naturally addresses the important case of binary outcomes, which has received far less attention by recent developments in the NPIV literature.

相關內容

Our study demonstrates the effective use of Large Language Models (LLMs) for automating the classification of complex datasets. We specifically target proposals of Decentralized Autonomous Organizations (DAOs), as the clas-sification of this data requires the understanding of context and, therefore, depends on human expertise, leading to high costs associated with the task. The study applies an iterative approach to specify categories and further re-fine them and the prompt in each iteration, which led to an accuracy rate of 95% in classifying a set of 100 proposals. With this, we demonstrate the po-tential of LLMs to automate data labeling tasks that depend on textual con-text effectively.

We consider the problem of parameter estimation in a high-dimensional generalized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-dependent matrix provide a simple yet surprisingly effective solution. However, despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured (i.i.d.\ Gaussian and Haar orthogonal) designs. In contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To address the problem, we consider correlated Gaussian designs capturing the anisotropic nature of the features via a covariance matrix $\Sigma$. Our main result is a precise asymptotic characterization of the performance of spectral estimators. This allows us to identify the optimal preprocessing that minimizes the number of samples needed for parameter estimation. Surprisingly, such preprocessing is universal across a broad set of designs, which partly addresses a conjecture on optimal spectral estimators for rotationally invariant models. Our principled approach vastly improves upon previous heuristic methods, including for designs common in computational imaging and genetics. The proposed methodology, based on approximate message passing, is broadly applicable and opens the way to the precise characterization of spiked matrices and of the corresponding spectral methods in a variety of settings.

We investigate the tractability of a simple fusion of two fundamental structures on graphs, a spanning tree and a perfect matching. Specifically, we consider the following problem: given an edge-weighted graph, find a minimum-weight spanning tree among those containing a perfect matching. On the positive side, we design a simple greedy algorithm for the case when the graph is complete (or complete bipartite) and the edge weights take at most two values. On the negative side, the problem is NP-hard even when the graph is complete (or complete bipartite) and the edge weights take at most three values, or when the graph is cubic, planar, and bipartite and the edge weights take at most two values. We also consider an interesting variant. We call a tree strongly balanced if on one side of the bipartition of the vertex set with respect to the tree, all but one of the vertices have degree $2$ and the remaining one is a leaf. This property is a sufficient condition for a tree to have a perfect matching, which enjoys an additional property. When the underlying graph is bipartite, strongly balanced spanning trees can be written as matroid intersection, and this fact was recently utilized to design an approximation algorithm for some kind of connectivity augmentation problem. The natural question is its tractability in nonbipartite graphs. As a negative answer, it turns out NP-hard to test whether a given graph has a strongly balanced spanning tree or not even when the graph is subcubic and planar.

This work proposes a novel adaptive linearized alternating direction multiplier method (LADMM) to convex optimization, which improves the convergence rate of the LADMM-based algorithm by adjusting step-size iteratively.The innovation of this method is to utilize the information of the current iteration point to adaptively select the appropriate parameters, thus expanding the selection of the subproblem step size and improving the convergence rate of the algorithm while ensuring convergence.The advantage of this method is that it can improve the convergence rate of the algorithm as much as possible without compromising the convergence. This is very beneficial for the solution of optimization problems because the traditional linearized alternating direction multiplier method has a trade-off in the selection of the regular term coefficients: larger coefficients ensure convergence but tend to lead to small step sizes, while smaller coefficients allow for an increase in the iterative step size but tend to lead to the algorithm's non-convergence. This balance can be better handled by adaptively selecting the parameters, thus improving the efficiency of the algorithm.

Equilibrium Propagation (EP) is a biologically plausible local learning algorithm initially developed for convergent recurrent neural networks (RNNs), where weight updates rely solely on the connecting neuron states across two phases. The gradient calculations in EP have been shown to approximate the gradients computed by Backpropagation Through Time (BPTT) when an infinitesimally small nudge factor is used. This property makes EP a powerful candidate for training Spiking Neural Networks (SNNs), which are commonly trained by BPTT. However, in the spiking domain, previous studies on EP have been limited to architectures involving few linear layers. In this work, for the first time we provide a formulation for training convolutional spiking convergent RNNs using EP, bridging the gap between spiking and non-spiking convergent RNNs. We demonstrate that for spiking convergent RNNs, there is a mismatch in the maximum pooling and its inverse operation, leading to inaccurate gradient estimation in EP. Substituting this with average pooling resolves this issue and enables accurate gradient estimation for spiking convergent RNNs. We also highlight the memory efficiency of EP compared to BPTT. In the regime of SNNs trained by EP, our experimental results indicate state-of-the-art performance on the MNIST and FashionMNIST datasets, with test errors of 0.97% and 8.89%, respectively. These results are comparable to those of convergent RNNs and SNNs trained by BPTT. These findings underscore EP as an optimal choice for on-chip training and a biologically-plausible method for computing error gradients.

We explore how much knowing a parametric restriction on propensity scores improves semiparametric efficiency bounds in the potential outcome framework. For stratified propensity scores, considered as a parametric model, we derive explicit formulas for the efficiency gain from knowing how the covariate space is split. Based on these, we find that the efficiency gain decreases as the partition of the stratification becomes finer. For general parametric models, where it is hard to obtain explicit representations of efficiency bounds, we propose a novel framework that enables us to see whether knowing a parametric model is valuable in terms of efficiency even when it is high-dimensional. In addition to the intuitive fact that knowing the parametric model does not help much if it is sufficiently flexible, we discover that the efficiency gain can be nearly zero even though the parametric assumption significantly restricts the space of possible propensity scores.

This study presents a comprehensive approach for optimizing the acquisition, utilization, and maintenance of ABLVR vascular robots in healthcare settings. Medical robotics, particularly in vascular treatments, necessitates precise resource allocation and optimization due to the complex nature of robot and operator maintenance. Traditional heuristic methods, though intuitive, often fail to achieve global optimization. To address these challenges, this research introduces a novel strategy, combining mathematical modeling, a hybrid genetic algorithm, and ARIMA time series forecasting. Considering the dynamic healthcare environment, our approach includes a robust resource allocation model for robotic vessels and operators. We incorporate the unique requirements of the adaptive learning process for operators and the maintenance needs of robotic components. The hybrid genetic algorithm, integrating simulated annealing and greedy approaches, efficiently solves the optimization problem. Additionally, ARIMA time series forecasting predicts the demand for vascular robots, further enhancing the adaptability of our strategy. Experimental results demonstrate the superiority of our approach in terms of optimization, transparency, and convergence speed from other state-of-the-art methods.

Deep Gaussian Processes (DGPs) leverage a compositional structure to model non-stationary processes. DGPs typically rely on local inducing point approximations across intermediate GP layers. Recent advances in DGP inference have shown that incorporating global Fourier features from Reproducing Kernel Hilbert Space (RKHS) can enhance the DGPs' capability to capture complex non-stationary patterns. This paper extends the use of these features to compositional GPs involving linear transformations. In particular, we introduce Ordinary Differential Equation (ODE) -based RKHS Fourier features that allow for adaptive amplitude and phase modulation through convolution operations. This convolutional formulation relates our work to recently proposed deep latent force models, a multi-layer structure designed for modelling nonlinear dynamical systems. By embedding these adjustable RKHS Fourier features within a doubly stochastic variational inference framework, our model exhibits improved predictive performance across various regression tasks.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司