亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning models are critically susceptible to evasion attacks from adversarial examples. Generally, adversarial examples, modified inputs deceptively similar to the original input, are constructed under whitebox settings by adversaries with full access to the model. However, recent attacks have shown a remarkable reduction in query numbers to craft adversarial examples using blackbox attacks. Particularly, alarming is the ability to exploit the classification decision from the access interface of a trained model provided by a growing number of Machine Learning as a Service providers including Google, Microsoft, IBM and used by a plethora of applications incorporating these models. The ability of an adversary to exploit only the predicted label from a model to craft adversarial examples is distinguished as a decision-based attack. In our study, we first deep dive into recent state-of-the-art decision-based attacks in ICLR and SP to highlight the costly nature of discovering low distortion adversarial employing gradient estimation methods. We develop a robust query efficient attack capable of avoiding entrapment in a local minimum and misdirection from noisy gradients seen in gradient estimation methods. The attack method we propose, RamBoAttack, exploits the notion of Randomized Block Coordinate Descent to explore the hidden classifier manifold, targeting perturbations to manipulate only localized input features to address the issues of gradient estimation methods. Importantly, the RamBoAttack is more robust to the different sample inputs available to an adversary and the targeted class. Overall, for a given target class, RamBoAttack is demonstrated to be more robust at achieving a lower distortion within a given query budget. We curate our extensive results using the large-scale high-resolution ImageNet dataset and open-source our attack, test samples and artifacts on GitHub.

相關內容

Advances in distributed machine learning can empower future communications and networking. The emergence of federated learning (FL) has provided an efficient framework for distributed machine learning, which, however, still faces many security challenges. Among them, model poisoning attacks have a significant impact on the security and performance of FL. Given that there have been many studies focusing on defending against model poisoning attacks, it is necessary to survey the existing work and provide insights to inspire future research. In this paper, we first classify defense mechanisms for model poisoning attacks into two categories: evaluation methods for local model updates and aggregation methods for the global model. Then, we analyze some of the existing defense strategies in detail. We also discuss some potential challenges and future research directions. To the best of our knowledge, we are the first to survey defense methods for model poisoning attacks in FL.

The proliferation of deep learning applications in several areas has led to the rapid adoption of such solutions from an ever-growing number of institutions and companies. The deep neural network (DNN) models developed by these entities are often trained on proprietary data. They require powerful computational resources, with the resulting DNN models being incorporated in the company's work pipeline or provided as a service. Being trained on proprietary information, these models provide a competitive edge for the owner company. At the same time, these models can be attractive to competitors (or malicious entities), which can employ state-of-the-art security attacks to steal and use these models for their benefit. As these attacks are hard to prevent, it becomes imperative to have mechanisms that enable an affected entity to verify the ownership of a DNN with high confidence. This paper presents TATTOOED, a robust and efficient DNN watermarking technique based on spread-spectrum channel coding. TATTOOED has a negligible effect on the performance of the DNN model and requires as little as one iteration to watermark a DNN model. We extensively evaluate TATTOOED against several state-of-the-art mechanisms used to remove watermarks from DNNs. Our results show that TATTOOED is robust to such removal techniques even in extreme scenarios. For example, if the removal techniques such as fine-tuning and parameter pruning change as much as 99\% of the model parameters, the TATTOOED watermark is still present in full in the DNN model, and ensures ownership verification.

Great advances in deep neural networks (DNNs) have led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying these models to safety-critical applications such as autonomous driving. Different defense approaches have been proposed against adversarial attacks, including: a) empirical defenses, which usually can be adaptively attacked again without providing robustness certification; and b) certifiably robust approaches which consist of robustness verification providing the lower bound of robust accuracy against any attacks under certain conditions and corresponding robust training approaches. In this paper, we systematize the certifiably robust approaches and related practical and theoretical implications and findings. We also provide the first comprehensive benchmark on existing robustness verification and training approaches on different datasets. In particular, we 1) provide a taxonomy for the robustness verification and training approaches, as well as summarize the methodologies for representative algorithms, 2) reveal the characteristics, strengths, limitations, and fundamental connections among these approaches, 3) discuss current research progresses, theoretical barriers, main challenges, and future directions for certifiably robust approaches for DNNs, and 4) provide an open-sourced unified platform to evaluate over 20 representative certifiably robust approaches for a wide range of DNNs.

The ability of Deep Neural Networks to approximate highly complex functions is the key to their success. This benefit, however, often comes at the cost of a large model size, which challenges their deployment in resource-constrained environments. To limit this issue, pruning techniques can introduce sparsity in the models, but at the cost of accuracy and adversarial robustness. This paper addresses these critical issues and introduces Deadwooding, a novel pruning technique that exploits a Lagrangian Dual method to encourage model sparsity while retaining accuracy and ensuring robustness. The resulting model is shown to significantly outperform the state-of-the-art studies in measures of robustness and accuracy.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Localizing the camera in a known indoor environment is a key building block for scene mapping, robot navigation, AR, etc. Recent advances estimate the camera pose via optimization over the 2D/3D-3D correspondences established between the coordinates in 2D/3D camera space and 3D world space. Such a mapping is estimated with either a convolution neural network or a decision tree using only the static input image sequence, which makes these approaches vulnerable to dynamic indoor environments that are quite common yet challenging in the real world. To address the aforementioned issues, in this paper, we propose a novel outlier-aware neural tree which bridges the two worlds, deep learning and decision tree approaches. It builds on three important blocks; (a) a hierarchical space partition over the indoor scene to construct the decision tree; (b) a neural routing function, implemented as a deep classification network, employed for better 3D scene understanding; and (c) an outlier rejection module used to filter out dynamic points during the hierarchical routing process. Our proposed algorithm is evaluated on the RIO-10 benchmark developed for camera relocalization in dynamic indoor environment. It achieves robust neural routing through space partitions and outperforms the state-of-the-art approaches by around 30\% on camera pose accuracy, while running comparably fast for evaluation.

Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its tansformation should share similar semantic clustering assignment. However, the representation features before softmax activation function could be quite different even the assignment probability is very similar since softmax is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. By investigating the internal relationship between mutual information and contrastive learning, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss. We apply it to both the semantic clustering assignment and representation feature and propose a novel method named Deep Robust Clustering by Contrastive Learning (DRC). Different to existing methods, DRC aims to increase inter-class diver-sities and decrease intra-class diversities simultaneously and achieve more robust clustering results. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.

As we seek to deploy machine learning models beyond virtual and controlled domains, it is critical to analyze not only the accuracy or the fact that it works most of the time, but if such a model is truly robust and reliable. This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms. We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses. We survey the most recent and important results in adversarial example generation, defense mechanisms with adversarial (re)Training as their main defense against perturbations. We also survey mothods that add regularization terms that change the behavior of the gradient, making it harder for attackers to achieve their objective. Alternatively, we've surveyed methods which formally derive certificates of robustness by exactly solving the optimization problem or by approximations using upper or lower bounds. In addition, we discuss the challenges faced by most of the recent algorithms presenting future research perspectives.

Graph neural networks (GNNs) are widely used in many applications. However, their robustness against adversarial attacks is criticized. Prior studies show that using unnoticeable modifications on graph topology or nodal features can significantly reduce the performances of GNNs. It is very challenging to design robust graph neural networks against poisoning attack and several efforts have been taken. Existing work aims at reducing the negative impact from adversarial edges only with the poisoned graph, which is sub-optimal since they fail to discriminate adversarial edges from normal ones. On the other hand, clean graphs from similar domains as the target poisoned graph are usually available in the real world. By perturbing these clean graphs, we create supervised knowledge to train the ability to detect adversarial edges so that the robustness of GNNs is elevated. However, such potential for clean graphs is neglected by existing work. To this end, we investigate a novel problem of improving the robustness of GNNs against poisoning attacks by exploring clean graphs. Specifically, we propose PA-GNN, which relies on a penalized aggregation mechanism that directly restrict the negative impact of adversarial edges by assigning them lower attention coefficients. To optimize PA-GNN for a poisoned graph, we design a meta-optimization algorithm that trains PA-GNN to penalize perturbations using clean graphs and their adversarial counterparts, and transfers such ability to improve the robustness of PA-GNN on the poisoned graph. Experimental results on four real-world datasets demonstrate the robustness of PA-GNN against poisoning attacks on graphs.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司