Dataset distillation plays a crucial role in creating compact datasets with similar training performance compared with original large-scale ones. This is essential for addressing the challenges of data storage and training costs. Prevalent methods facilitate knowledge transfer by matching the gradients, embedding distributions, or training trajectories of synthetic images with those of the sampled original images. Although there are various matching objectives, currently the strategy for selecting original images is limited to naive random sampling. We argue that random sampling overlooks the evenness of the selected sample distribution, which may result in noisy or biased matching targets. Besides, the sample diversity is also not constrained by random sampling. Additionally, current methods predominantly focus on single-dimensional matching, where information is not fully utilized. To address these challenges, we propose a novel matching strategy called Dataset Distillation by Bidirectional REpresentAtive Matching (DREAM+), which selects representative original images for bidirectional matching. DREAM+ is applicable to a variety of mainstream dataset distillation frameworks and significantly reduces the number of distillation iterations by more than 15 times without affecting performance. Given sufficient training time, DREAM+ can further improve the performance and achieve state-of-the-art results. We have released the code at github.com/NUS-HPC-AI-Lab/DREAM+.
Financial networks raise a significant computational challenge in identifying insolvent firms and evaluating their exposure to systemic risk. This task, known as the clearing problem, is computationally tractable when dealing with simple debt contracts. However under the presence of certain derivatives called credit default swaps (CDSes) the clearing problem is $\textsf{FIXP}$-complete. Existing techniques only show $\textsf{PPAD}$-hardness for finding an $\epsilon$-solution for the clearing problem with CDSes within an unspecified small range for $\epsilon$. We present significant progress in both facets of the clearing problem: (i) intractability of approximate solutions; (ii) algorithms and heuristics for computable solutions. Leveraging $\textsf{Pure-Circuit}$ (FOCS'22), we provide the first explicit inapproximability bound for the clearing problem involving CDSes. Our primal contribution is a reduction from $\textsf{Pure-Circuit}$ which establishes that finding approximate solutions is $\textsf{PPAD}$-hard within a range of roughly 5%. To alleviate the complexity of the clearing problem, we identify two meaningful restrictions of the class of financial networks motivated by regulations: (i) the presence of a central clearing authority; and (ii) the restriction to covered CDSes. We provide the following results: (i.) The $\textsf{PPAD}$-hardness of approximation persists when central clearing authorities are introduced; (ii.) An optimisation-based method for solving the clearing problem with central clearing authorities; (iii.) A polynomial-time algorithm when the two restrictions hold simultaneously.
The gigapixel scale of whole slide images (WSIs) poses a challenge for histopathology multi-modal chatbots, requiring a global WSI analysis for diagnosis, compounding evidence from different WSI patches. Current visual instruction datasets, generated through large language models, focus on creating question/answer pairs for individual image patches, which may lack diagnostic capacity on their own in histopathology, further complicated by the absence of spatial grounding in histopathology image captions. To bridge this gap, we introduce Quilt-Instruct, a large-scale dataset of 107,131 histopathology-specific instruction question/answer pairs, that is collected by leveraging educational histopathology videos from YouTube, which provides spatial localization of captions by automatically extracting narrators' cursor movements. In addition, we provide contextual reasoning by extracting diagnosis and supporting facts from the entire video content to guide the extrapolative reasoning of GPT-4. Using Quilt-Instruct, we train Quilt-LLaVA, which can reason beyond the given single image patch, enabling diagnostic reasoning and the capability of spatial awareness. To evaluate Quilt-LLaVA, we propose a comprehensive evaluation dataset created from 985 images and 1283 human-generated question-answers. We also thoroughly evaluate Quilt-LLaVA using public histopathology datasets, where Quilt-LLaVA significantly outperforms SOTA by over 10% on relative GPT-4 score and 4% and 9% on open and closed set VQA. Our code, data, and model are publicly available at quilt-llava.github.io.
Developing generalizable manipulation skills is a core challenge in embodied AI. This includes generalization across diverse task configurations, encompassing variations in object shape, density, friction coefficient, and external disturbances such as forces applied to the robot. Rapid Motor Adaptation (RMA) offers a promising solution to this challenge. It posits that essential hidden variables influencing an agent's task performance, such as object mass and shape, can be effectively inferred from the agent's action and proprioceptive history. Drawing inspiration from RMA in locomotion and in-hand rotation, we use depth perception to develop agents tailored for rapid motor adaptation in a variety of manipulation tasks. We evaluated our agents on four challenging tasks from the Maniskill2 benchmark, namely pick-and-place operations with hundreds of objects from the YCB and EGAD datasets, peg insertion with precise position and orientation, and operating a variety of faucets and handles, with customized environment variations. Empirical results demonstrate that our agents surpass state-of-the-art methods like automatic domain randomization and vision-based policies, obtaining better generalization performance and sample efficiency.
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers. This technique is used both for fine-tuning (LoRA, QLoRA) and full train (ReLoRA). This paper presents the RunLoRA framework for efficient implementations of LoRA that significantly improves the speed of neural network training and fine-tuning using low-rank adapters. The proposed implementation optimizes the computation of LoRA operations based on dimensions of corresponding linear layer, layer input dimensions and lora rank by choosing best forward and backward computation graph based on FLOPs and time estimations, resulting in faster training without sacrificing accuracy. The experimental results show up to 17% speedup on Llama family of models.
We introduce Hyperbard, a dataset of diverse relational data representations derived from Shakespeare's plays. Our representations range from simple graphs capturing character co-occurrence in single scenes to hypergraphs encoding complex communication settings and character contributions as hyperedges with edge-specific node weights. By making multiple intuitive representations readily available for experimentation, we facilitate rigorous representation robustness checks in graph learning, graph mining, and network analysis, highlighting the advantages and drawbacks of specific representations. Leveraging the data released in Hyperbard, we demonstrate that many solutions to popular graph mining problems are highly dependent on the representation choice, thus calling current graph curation practices into question. As an homage to our data source, and asserting that science can also be art, we present all our points in the form of a play.
Recent few-shot segmentation (FSS) methods introduce an extra pre-training stage before meta-training to obtain a stronger backbone, which has become a standard step in few-shot learning. Despite the effectiveness, current pre-training scheme suffers from the merged background problem: only base classes are labelled as foregrounds, making it hard to distinguish between novel classes and actual background. In this paper, we propose a new pre-training scheme for FSS via decoupling the novel classes from background, called Background Clustering Pre-Training (BCPT). Specifically, we adopt online clustering to the pixel embeddings of merged background to explore the underlying semantic structures, bridging the gap between pre-training and adaptation to novel classes. Given the clustering results, we further propose the background mining loss and leverage base classes to guide the clustering process, improving the quality and stability of clustering results. Experiments on PASCAL-5i and COCO-20i show that BCPT yields advanced performance. Code will be available.
We introduce X-Adapter, a universal upgrader to enable the pretrained plug-and-play modules (e.g., ControlNet, LoRA) to work directly with the upgraded text-to-image diffusion model (e.g., SDXL) without further retraining. We achieve this goal by training an additional network to control the frozen upgraded model with the new text-image data pairs. In detail, X-Adapter keeps a frozen copy of the old model to preserve the connectors of different plugins. Additionally, X-Adapter adds trainable mapping layers that bridge the decoders from models of different versions for feature remapping. The remapped features will be used as guidance for the upgraded model. To enhance the guidance ability of X-Adapter, we employ a null-text training strategy for the upgraded model. After training, we also introduce a two-stage denoising strategy to align the initial latents of X-Adapter and the upgraded model. Thanks to our strategies, X-Adapter demonstrates universal compatibility with various plugins and also enables plugins of different versions to work together, thereby expanding the functionalities of diffusion community. To verify the effectiveness of the proposed method, we conduct extensive experiments and the results show that X-Adapter may facilitate wider application in the upgraded foundational diffusion model.
Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.
Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.