亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The blind deconvolution problem amounts to reconstructing both a signal and a filter from the convolution of these two. It constitutes a prominent topic in mathematical and engineering literature. In this work, we analyze a sparse version of the problem: The filter $h\in \mathbb{R}^\mu$ is assumed to be $s$-sparse, and the signal $b \in \mathbb{R}^n$ is taken to be $\sigma$-sparse, both supports being unknown. We observe a convolution between the filter and a linear transformation of the signal. Motivated by practically important multi-user communication applications, we derive a recovery guarantee for the simultaneous demixing and deconvolution setting. We achieve efficient recovery by relaxing the problem to a hierarchical sparse recovery for which we can build on a flexible framework. At the same time, for this we pay the price of some sub-optimal guarantees compared to the number of free parameters of the problem. The signal model we consider is sufficiently general to capture many applications in a number of engineering fields. Despite their practical importance, we provide first rigorous performance guarantees for efficient and simple algorithms for the bi-sparse and generalized demixing setting. We complement our analytical results by presenting results of numerical simulations. We find evidence that the sub-optimal scaling $s^2\sigma \log(\mu)\log(n)$ of our derived sufficient condition is likely overly pessimistic and that the observed performance is better described by a scaling proportional to $ s\sigma$ up to log-factors.

相關內容

We study the parameterized complexity of various classic vertex-deletion problems such as Odd cycle transversal, Vertex planarization, and Chordal vertex deletion under hybrid parameterizations. Existing FPT algorithms for these problems either focus on the parameterization by solution size, detecting solutions of size $k$ in time $f(k) \cdot n^{O(1)}$, or width parameterizations, finding arbitrarily large optimal solutions in time $f(w) \cdot n^{O(1)}$ for some width measure $w$ like treewidth. We unify these lines of research by presenting FPT algorithms for parameterizations that can simultaneously be arbitrarily much smaller than the solution size and the treewidth. We consider two classes of parameterizations which are relaxations of either treedepth of treewidth. They are related to graph decompositions in which subgraphs that belong to a target class H (e.g., bipartite or planar) are considered simple. First, we present a framework for computing approximately optimal decompositions for miscellaneous classes H. Namely, if the cost of an optimal decomposition is $k$, we show how to find a decomposition of cost $k^{O(1)}$ in time $f(k) \cdot n^{O(1)}$. This is applicable to any graph class H for which the corresponding vertex-deletion problem admits a constant-factor approximation algorithm or an FPT algorithm paramaterized by the solution size. Secondly, we exploit the constructed decompositions for solving vertex-deletion problems by extending ideas from algorithms using iterative compression and the finite state property. For the three mentioned vertex-deletion problems, and all problems which can be formulated as hitting a finite set of connected forbidden (a) minors or (b) (induced) subgraphs, we obtain FPT algorithms with respect to both studied parameterizations.

The possibilities offered by quantum computing have drawn attention in the distributed computing community recently, with several breakthrough results showing quantum distributed algorithms that run faster than the fastest known classical counterparts, and even separations between the two models. A prime example is the result by Izumi, Le Gall, and Magniez [STACS 2020], who showed that triangle detection by quantum distributed algorithms is easier than triangle listing, while an analogous result is not known in the classical case. In this paper we present a framework for fast quantum distributed clique detection. This improves upon the state-of-the-art for the triangle case, and is also more general, applying to larger clique sizes. Our main technical contribution is a new approach for detecting cliques by encapsulating this as a search task for nodes that can be added to smaller cliques. To extract the best complexities out of our approach, we develop a framework for nested distributed quantum searches, which employ checking procedures that are quantum themselves. Moreover, we show a circuit-complexity barrier on proving a lower bound of the form $\Omega(n^{3/5+\epsilon})$ for $K_p$-detection for any $p \geq 4$, even in the classical (non-quantum) distributed CONGEST setting.

This paper proposes a novel graph-based regularized regression estimator - the hierarchical feature regression (HFR) -, which mobilizes insights from the domains of machine learning and graph theory to estimate robust parameters for a linear regression. The estimator constructs a supervised feature graph that decomposes parameters along its edges, adjusting first for common variation and successively incorporating idiosyncratic patterns into the fitting process. The graph structure has the effect of shrinking parameters towards group targets, where the extent of shrinkage is governed by a hyperparamter, and group compositions as well as shrinkage targets are determined endogenously. The method offers rich resources for the visual exploration of the latent effect structure in the data, and demonstrates good predictive accuracy and versatility when compared to a panel of commonly used regularization techniques across a range of empirical and simulated regression tasks.

We introduce a new method for Estimation of Signal Parameters based on Iterative Rational Approximation (ESPIRA) for sparse exponential sums. Our algorithm uses the AAA algorithm for rational approximation of the discrete Fourier transform of the given equidistant signal values. We show that ESPIRA can be interpreted as a matrix pencil method applied to Loewner matrices. These Loewner matrices are closely connected with the Hankel matrices which are usually employed for signal recovery. Due to the construction of the Loewner matrices via an adaptive selection of index sets, the matrix pencil method is stabilized. ESPIRA achieves similar recovery results for exact data as ESPRIT and the matrix pencil method but with less computational effort. Moreover, ESPIRA strongly outperforms ESPRIT and the matrix pencil method for noisy data and for signal approximation by short exponential sums.

Compact stellar systems such as Ultra-compact dwarfs (UCDs) and Globular Clusters (GCs) around galaxies are known to be the tracers of the merger events that have been forming these galaxies. Therefore, identifying such systems allows to study galaxies mass assembly, formation and evolution. However, in the lack of spectroscopic information detecting UCDs/GCs using imaging data is very uncertain. Here, we aim to train a machine learning model to separate these objects from the foreground stars and background galaxies using the multi-wavelength imaging data of the Fornax galaxy cluster in 6 filters, namely u, g, r, i, J and Ks. The classes of objects are highly imbalanced which is problematic for many automatic classification techniques. Hence, we employ Synthetic Minority Over-sampling to handle the imbalance of the training data. Then, we compare two classifiers, namely Localized Generalized Matrix Learning Vector Quantization (LGMLVQ) and Random Forest (RF). Both methods are able to identify UCDs/GCs with a precision and a recall of >93 percent and provide relevances that reflect the importance of each feature dimension %(colors and angular sizes) for the classification. Both methods detect angular sizes as important markers for this classification problem. While it is astronomical expectation that color indices of u-i and i-Ks are the most important colors, our analysis shows that colors such as g-r are more informative, potentially because of higher signal-to-noise ratio. Besides the excellent performance the LGMLVQ method allows further interpretability by providing the feature importance for each individual class, class-wise representative samples and the possibility for non-linear visualization of the data as demonstrated in this contribution. We conclude that employing machine learning techniques to identify UCDs/GCs can lead to promising results.

In this paper, we use topological data analysis techniques to construct a suitable neural network classifier for the task of learning sensor signals of entire power plants according to their reference designation system. We use representations of persistence diagrams to derive necessary preprocessing steps and visualize the large amounts of data. We derive deep architectures with one-dimensional convolutional layers combined with stacked long short-term memories as residual networks suitable for processing the persistence features. We combine three separate sub-networks, obtaining as input the time series itself and a representation of the persistent homology for the zeroth and first dimension. We give a mathematical derivation for most of the used hyper-parameters. For validation, numerical experiments were performed with sensor data from four power plants of the same construction type.

Adhesive categories provide an abstract framework for the algebraic approach to rewriting theory, where many general results can be recast and uniformly proved. However, checking that a model satisfies the adhesivity properties is sometimes far from immediate. In this paper we present a new criterion giving a sufficient condition for $\mathcal{M}, \mathcal{N}$-adhesivity, a generalisation of the original notion of adhesivity. We apply it to several existing categories, and in particular to hierarchical graphs, a formalism that is notoriously difficult to fit in the mould of algebraic approaches to rewriting and for which various alternative definitions float around.

This work reviews the problem of object detection in underwater environments. We analyse and quantify the shortcomings of conventional state-of-the-art (SOTA) algorithms in the computer vision community when applied to this challenging environment, as well as providing insights and general guidelines for future research efforts. First, we assessed if pretraining with the conventional ImageNet is beneficial when the object detector needs to be applied to environments that may be characterised by a different feature distribution. We then investigate whether two-stage detectors yields to better performance with respect to single-stage detectors, in terms of accuracy, intersection of union (IoU), floating operation per second (FLOPS), and inference time. Finally, we assessed the generalisation capability of each model to a lower quality dataset to simulate performance on a real scenario, in which harsher conditions ought to be expected. Our experimental results provide evidence that underwater object detection requires searching for "ad-hoc" architectures than merely training SOTA architectures on new data, and that pretraining is not beneficial.

Graph neural networks (GNNs) have limited expressive power, failing to represent many graph classes correctly. While more expressive graph representation learning (GRL) alternatives can distinguish some of these classes, they are significantly harder to implement, may not scale well, and have not been shown to outperform well-tuned GNNs in real-world tasks. Thus, devising simple, scalable, and expressive GRL architectures that also achieve real-world improvements remains an open challenge. In this work, we show the extent to which graph reconstruction -- reconstructing a graph from its subgraphs -- can mitigate the theoretical and practical problems currently faced by GRL architectures. First, we leverage graph reconstruction to build two new classes of expressive graph representations. Secondly, we show how graph reconstruction boosts the expressive power of any GNN architecture while being a (provably) powerful inductive bias for invariances to vertex removals. Empirically, we show how reconstruction can boost GNN's expressive power -- while maintaining its invariance to permutations of the vertices -- by solving seven graph property tasks not solvable by the original GNN. Further, we demonstrate how it boosts state-of-the-art GNN's performance across nine real-world benchmark datasets.

Given the input graph and its label/property, several key problems of graph learning, such as finding interpretable subgraphs, graph denoising and graph compression, can be attributed to the fundamental problem of recognizing a subgraph of the original one. This subgraph shall be as informative as possible, yet contains less redundant and noisy structure. This problem setting is closely related to the well-known information bottleneck (IB) principle, which, however, has less been studied for the irregular graph data and graph neural networks (GNNs). In this paper, we propose a framework of Graph Information Bottleneck (GIB) for the subgraph recognition problem in deep graph learning. Under this framework, one can recognize the maximally informative yet compressive subgraph, named IB-subgraph. However, the GIB objective is notoriously hard to optimize, mostly due to the intractability of the mutual information of irregular graph data and the unstable optimization process. In order to tackle these challenges, we propose: i) a GIB objective based-on a mutual information estimator for the irregular graph data; ii) a bi-level optimization scheme to maximize the GIB objective; iii) a connectivity loss to stabilize the optimization process. We evaluate the properties of the IB-subgraph in three application scenarios: improvement of graph classification, graph interpretation and graph denoising. Extensive experiments demonstrate that the information-theoretic IB-subgraph enjoys superior graph properties.

北京阿比特科技有限公司