Cell-free communication has the potential to significantly improve grant-free transmission in massive machine-type communication, wherein multiple access points jointly serve a large number of user equipments to improve coverage and spectral efficiency. In this paper, we propose a novel framework for joint active user detection (AUD), channel estimation (CE), and data detection (DD) for massive grant-free transmission in cell-free systems. We formulate an optimization problem for joint AUD, CE, and DD by considering both the sparsity of the data matrix, which arises from intermittent user activity, and the sparsity of the effective channel matrix, which arises from intermittent user activity and large-scale fading. We approximately solve this optimization problem with a box-constrained forward-backward splitting algorithm, which significantly improves AUD, CE, and DD performance. We demonstrate the effectiveness of the proposed framework through simulation experiments.
Case-based reasoning (CBR) as a methodology for problem-solving can use any appropriate computational technique. This position paper argues that CBR researchers have somewhat overlooked recent developments in deep learning and large language models (LLMs). The underlying technical developments that have enabled the recent breakthroughs in AI have strong synergies with CBR and could be used to provide a persistent memory for LLMs to make progress towards Artificial General Intelligence.
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable (quantum) oblivious transfer (OT) protocol, mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions...) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely to exist classically as Cryptomania is believed to be different from Minicrypt. In particular, by instantiating our construction using Non-Interactive ZK (NIZK), we provide the first round-optimal (2-message) quantum OT protocol secure in the random oracle model, and round-optimal extensions to string and k-out-of-n OT. At the heart of our construction lies a new method that allows us to prove properties on a received quantum state without revealing additional information on it, even in a non-interactive way, without public-key primitives, and/or with statistical guarantees when using an appropriate classical ZK protocol. We can notably prove that a state has been partially measured (with arbitrary constraints on the set of measured qubits), without revealing any additional information on this set. This notion can be seen as an analog of ZK to quantum states, and we expect it to be of independent interest as it extends complexity theory to quantum languages, as illustrated by the two new complexity classes we introduce, ZKstatesQIP and ZKstatesQMA.
The fusion of human-centric design and artificial intelligence (AI) capabilities has opened up new possibilities for next-generation autonomous vehicles that go beyond transportation. These vehicles can dynamically interact with passengers and adapt to their preferences. This paper proposes a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles. By utilizing LLMs' linguistic and contextual understanding abilities with specialized tools, we aim to integrate the language and reasoning capabilities of LLMs into autonomous vehicles. Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks, to explore LLMs' interpretation, interaction, and reasoning in various scenarios. We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands. Our empirical results highlight the substantial advantages of utilizing chain-of-thought prompting, leading to improved driving decisions, and showing the potential for LLMs to enhance personalized driving experiences through ongoing verbal feedback. The proposed framework aims to transform autonomous vehicle operations, offering personalized support, transparent decision-making, and continuous learning to enhance safety and effectiveness. We achieve user-centric, transparent, and adaptive autonomous driving ecosystems supported by the integration of LLMs into autonomous vehicles.
Out-of-distribution (OOD) detection is essential for reliable and trustworthy machine learning. Recent multi-modal OOD detection leverages textual information from in-distribution (ID) class names for visual OOD detection, yet it currently neglects the rich contextual information of ID classes. Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class. Indiscriminately using such knowledge causes catastrophic damage to OOD detection due to LLMs' hallucinations, as is observed by our analysis. In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs. Specifically, we introduce a consistency-based uncertainty calibration method to estimate the confidence score of each generation. We further extract visual objects from each image to fully capitalize on the aforementioned world knowledge. Extensive experiments demonstrate that our method consistently outperforms the state-of-the-art.
Large language models are a form of artificial intelligence systems whose primary knowledge consists of the statistical patterns, semantic relationships, and syntactical structures of language1. Despite their limited forms of "knowledge", these systems are adept at numerous complex tasks including creative writing, storytelling, translation, question-answering, summarization, and computer code generation. However, they have yet to demonstrate advanced applications in natural science. Here we show how large language models can perform scientific synthesis, inference, and explanation. We present a method for using general-purpose large language models to make inferences from scientific datasets of the form usually associated with special-purpose machine learning algorithms. We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature. When a conventional machine learning system is augmented with this synthesized and inferred knowledge it can outperform the current state of the art across a range of benchmark tasks for predicting molecular properties. This approach has the further advantage that the large language model can explain the machine learning system's predictions. We anticipate that our framework will open new avenues for AI to accelerate the pace of scientific discovery.
Semantic communication aims to transmit meaningful and effective information rather than focusing on individual symbols or bits, resulting in benefits like reduced latency, bandwidth usage, and higher throughput compared to traditional communication. However, semantic communication poses significant challenges due to the need for universal metrics for benchmarking the joint effects of semantic information loss and practical energy consumption. This research presents a novel multi-objective loss function named "Energy-Optimized Semantic Loss" (EOSL), addressing the challenge of balancing semantic information loss and energy consumption. Through comprehensive experiments on transformer models, including CPU and GPU energy usage, it is demonstrated that EOSL-based encoder model selection can save up to 90\% of energy while achieving a 44\% improvement in semantic similarity performance during inference in this experiment. This work paves the way for energy-efficient neural network selection and the development of greener semantic communication architectures.
Recent advancements in understanding the impulse response of the first arrival position (FAP) channel in molecular communication (MC) have illuminated its Shannon capacity. While Lee et al. shed light on FAP channel capacities with vertical drifts, the zero-drift scenario remains a conundrum, primarily due to the challenges associated with the heavy-tailed Cauchy distributions whose first and second moments do not exist, rendering traditional mutual information constraints ineffective. This paper unveils a novel characterization of the zero drift FAP channel capacity for both 2D and 3D. Interestingly, our results reveal a 3D FAP channel capacity that is double its 2D counterpart, hinting at a capacity increase with spatial dimension growth. Furthermore, our approach, which incorporates a modified logarithmic constraint and an output signal constraint, offers a simplified and more intuitive formula (similar to the well-known Gaussian case) for estimating FAP channel capacity.
Image captioning is a challenging task involving generating a textual description for an image using computer vision and natural language processing techniques. This paper proposes a deep neural framework for image caption generation using a GRU-based attention mechanism. Our approach employs multiple pre-trained convolutional neural networks as the encoder to extract features from the image and a GRU-based language model as the decoder to generate descriptive sentences. To improve performance, we integrate the Bahdanau attention model with the GRU decoder to enable learning to focus on specific image parts. We evaluate our approach using the MSCOCO and Flickr30k datasets and show that it achieves competitive scores compared to state-of-the-art methods. Our proposed framework can bridge the gap between computer vision and natural language and can be extended to specific domains.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.