亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding and modeling the popularity of User Generated Content (UGC) short videos on social media platforms presents a critical challenge with broad implications for content creators and recommendation systems. This study delves deep into the intricacies of predicting engagement for newly published videos with limited user interactions. Surprisingly, our findings reveal that Mean Opinion Scores from previous video quality assessment datasets do not strongly correlate with video engagement levels. To address this, we introduce a substantial dataset comprising 90,000 real-world UGC short videos from Snapchat. Rather than relying on view count, average watch time, or rate of likes, we propose two metrics: normalized average watch percentage (NAWP) and engagement continuation rate (ECR) to describe the engagement levels of short videos. Comprehensive multi-modal features, including visual content, background music, and text data, are investigated to enhance engagement prediction. With the proposed dataset and two key metrics, our method demonstrates its ability to predict engagements of short videos purely from video content.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Large video models, pretrained on massive amounts of Internet video, provide a rich source of physical knowledge about the dynamics and motions of objects and tasks. However, video models are not grounded in the embodiment of an agent, and do not describe how to actuate the world to reach the visual states depicted in a video. To tackle this problem, current methods use a separate vision-based inverse dynamic model trained on embodiment-specific data to map image states to actions. Gathering data to train such a model is often expensive and challenging, and this model is limited to visual settings similar to the ones in which data are available. In this paper, we investigate how to directly ground video models to continuous actions through self-exploration in the embodied environment -- using generated video states as visual goals for exploration. We propose a framework that uses trajectory level action generation in combination with video guidance to enable an agent to solve complex tasks without any external supervision, e.g., rewards, action labels, or segmentation masks. We validate the proposed approach on 8 tasks in Libero, 6 tasks in MetaWorld, 4 tasks in Calvin, and 12 tasks in iThor Visual Navigation. We show how our approach is on par with or even surpasses multiple behavior cloning baselines trained on expert demonstrations while without requiring any action annotations.

Large Language Models (LLMs) have allowed recent LLM-based approaches to achieve excellent performance on long-video understanding benchmarks. We investigate how extensive world knowledge and strong reasoning skills of underlying LLMs influence this strong performance. Surprisingly, we discover that LLM-based approaches can yield surprisingly good accuracy on long-video tasks with limited video information, sometimes even with no video specific information. Building on this, we exploring injecting video-specific information into an LLM-based framework. We utilize off-the-shelf vision tools to extract three object-centric information modalities from videos and then leverage natural language as a medium for fusing this information. Our resulting Multimodal Video Understanding (MVU) framework demonstrates state-of-the-art performance across multiple video understanding benchmarks. Strong performance also on robotics domain tasks establish its strong generality. Our code will be released publicly.

Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from $\mathcal{O}(L^6)$ to $\mathcal{O}(L^3)$, where $L$ is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.

Social media has become an integral part of modern life, but it has also brought with it the pervasive issue of cyberbullying a serious menace in today's digital age. Cyberbullying, a form of harassment that occurs on social networks, has escalated alongside the growth of these platforms. Sentiment analysis holds significant potential not only for detecting bullying phrases but also for identifying victims who are at high risk of harm, whether to themselves or others. Our work focuses on leveraging deep learning and natural language understanding techniques to detect traces of bullying in social media posts. We developed a Recurrent Neural Network with Long Short-Term Memory (LSTM) cells, using different embeddings. One approach utilizes BERT embeddings, while the other replaces the embeddings layer with the recently released embeddings API from OpenAI. We conducted a performance comparison between these two approaches to evaluate their effectiveness in sentiment analysis of Formspring Cyberbullying data. Our Code is Available at //github.com/ppujari/xcs224u

Generative Artificial Intelligence (AI) technologies and large models are producing realistic outputs across various domains, such as images, text, speech, and music. Creating these advanced generative models requires significant resources, particularly large and high-quality datasets. To minimise training expenses, many algorithm developers use data created by the models themselves as a cost-effective training solution. However, not all synthetic data effectively improve model performance, necessitating a strategic balance in the use of real versus synthetic data to optimise outcomes. Currently, the previously well-controlled integration of real and synthetic data is becoming uncontrollable. The widespread and unregulated dissemination of synthetic data online leads to the contamination of datasets traditionally compiled through web scraping, now mixed with unlabeled synthetic data. This trend, known as the AI autophagy phenomenon, suggests a future where generative AI systems may increasingly consume their own outputs without discernment, raising concerns about model performance, reliability, and ethical implications. What will happen if generative AI continuously consumes itself without discernment? What measures can we take to mitigate the potential adverse effects? To address these research questions, this study examines the existing literature, delving into the consequences of AI autophagy, analyzing the associated risks, and exploring strategies to mitigate its impact. Our aim is to provide a comprehensive perspective on this phenomenon advocating for a balanced approach that promotes the sustainable development of generative AI technologies in the era of large models.

This study investigates the translation of circumlocution from Arabic to English in a corpus of short stories by renowned Arabic authors. By analyzing the source and target texts, the study aims to identify and categorize circumlocution instances in Arabic and their corresponding renditions in English. The study employs Nida's (1964) translation theory as a framework to assess the appropriateness of the translation strategies employed. It examines the extent to which translators successfully rendered Arabic circumlocution into English, identifying potential challenges and limitations in the translation process. The findings reveal significant similarities between Arabic circumlocution categories and English metadiscourse categories, particularly in terms of textual and interpersonal functions. However, the study also highlights instances where translators encountered difficulties in accurately conveying the nuances of circumlocution, often resorting to strategies like addition, subtraction, and alteration.//ntu.edu.iq/

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司