The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport, which enable comparisons between probability measures defined on distinct metric spaces. They are particularly useful in areas such as network analysis and geometry processing, as computation of a GW distance involves solving for registration between the objects which minimizes geometric distortion. Although GW distances have proven useful for various applications in the recent machine learning literature, it has been observed that they are inherently sensitive to outlier noise and cannot accommodate partial matching. This has been addressed by various constructions building on the GW framework; in this article, we focus specifically on a natural relaxation of the GW optimization problem, introduced by Chapel et al., which is aimed at addressing exactly these shortcomings. Our goal is to understand the theoretical properties of this relaxed optimization problem, from the viewpoint of metric geometry. While the relaxed problem fails to induce a metric, we derive precise characterizations of how it fails the axioms of non-degeneracy and triangle inequality. These observations lead us to define a novel family of distances, whose construction is inspired by the Prokhorov and Ky Fan distances, as well as by the recent work of Raghvendra et al.\ on robust versions of classical Wasserstein distance. We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations. These results provide a mathematically rigorous basis for using our robust partial GW distances in applications where outliers and partial matching are concerns.
Deep neural networks (DNNs) are nowadays witnessing a major success in solving many pattern recognition tasks including skeleton-based classification. The deployment of DNNs on edge-devices, endowed with limited time and memory resources, requires designing lightweight and efficient variants of these networks. Pruning is one of the lightweight network design techniques that operate by removing unnecessary network parts, in a structured or an unstructured manner, including individual weights, neurons or even entire channels. Nonetheless, structured and unstructured pruning methods, when applied separately, may either be inefficient or ineffective. In this paper, we devise a novel semi-structured method that discards the downsides of structured and unstructured pruning while gathering their upsides to some extent. The proposed solution is based on a differentiable cascaded parametrization which combines (i) a band-stop mechanism that prunes weights depending on their magnitudes, (ii) a weight-sharing parametrization that prunes connections either individually or group-wise, and (iii) a gating mechanism which arbitrates between different group-wise and entry-wise pruning. All these cascaded parametrizations are built upon a common latent tensor which is trained end-to-end by minimizing a classification loss and a surrogate tensor rank regularizer. Extensive experiments, conducted on the challenging tasks of action and hand-gesture recognition, show the clear advantage of our proposed semi-structured pruning approach against both structured and unstructured pruning, when taken separately, as well as the related work.
Detection of abrupt spatial changes in physical properties representing unique geometric features such as buried objects, cavities, and fractures is an important problem in geophysics and many engineering disciplines. In this context, simultaneous spatial field and geometry estimation methods that explicitly parameterize the background spatial field and the geometry of the embedded anomalies are of great interest. This paper introduces an advanced inversion procedure for simultaneous estimation using the domain independence property of the Karhunen-Lo\`eve (K-L) expansion. Previous methods pursuing this strategy face significant computational challenges. The associated integral eigenvalue problem (IEVP) needs to be solved repeatedly on evolving domains, and the shape derivatives in gradient-based algorithms require costly computations of the Moore-Penrose inverse. Leveraging the domain independence property of the K-L expansion, the proposed method avoids both of these bottlenecks, and the IEVP is solved only once on a fixed bounding domain. Comparative studies demonstrate that our approach yields two orders of magnitude improvement in K-L expansion gradient computation time. Inversion studies on one-dimensional and two-dimensional seepage flow problems highlight the benefits of incorporating geometry parameters along with spatial field parameters. The proposed method captures abrupt changes in hydraulic conductivity with a lower number of parameters and provides accurate estimates of boundary and spatial-field uncertainties, outperforming spatial-field-only estimation methods.
Uplift modeling and Heterogeneous Treatment Effect (HTE) estimation aim at predicting the causal effect of an action, such as a medical treatment or a marketing campaign on a specific individual. In this paper, we focus on data from Randomized Controlled Experiments which guarantee causal interpretation of the outcomes. Class and treatment imbalance are important problems in uplift modeling/HTE, but classical undersampling or oversampling based approaches are hard to apply in this case since they distort the predicted effect. Calibration methods have been proposed in the past, however, they do not guarantee correct predictions. In this work, we propose an approach alternative to undersampling, based on flipping the class value of selected records. We show that the proposed approach does not distort the predicted effect and does not require calibration. The method is especially useful for models based on class variable transformation (modified outcome models). We address those models separately, designing a transformation scheme which guarantees correct predictions and addresses also the problem of treatment imbalance which is especially important for those models. Experiments fully confirm our theoretical results. Additionally, we demonstrate that our method is a viable alternative also for standard classification problems.
Finite element discretization of Stokes problems can result in singular, inconsistent saddle point linear algebraic systems. This inconsistency can cause many iterative methods to fail to converge. In this work, we consider the lowest-order weak Galerkin finite element method to discretize Stokes flow problems and study a consistency enforcement by modifying the right-hand side of the resulting linear system. It is shown that the modification of the scheme does not affect the optimal-order convergence of the numerical solution. Moreover, inexact block diagonal and triangular Schur complement preconditioners and the minimal residual method (MINRES) and the generalized minimal residual method (GMRES) are studied for the iterative solution of the modified scheme. Bounds for the eigenvalues and the residual of MINRES/GMRES are established. Those bounds show that the convergence of MINRES and GMRES is independent of the viscosity parameter and mesh size. The convergence of the modified scheme and effectiveness of the preconditioners are verified using numerical examples in two and three dimensions.
Federated Learning (FL) is a machine learning paradigm in which many clients cooperatively train a single centralized model while keeping their data private and decentralized. FL is commonly used in edge computing, which involves placing computer workloads (both hardware and software) as close as possible to the edge, where the data is being created and where actions are occurring, enabling faster response times, greater data privacy, and reduced data transfer costs. However, due to the heterogeneous data distributions/contents of clients, it is non-trivial to accurately evaluate the contributions of local models in global centralized model aggregation. This is an example of a major challenge in FL, commonly known as data imbalance or class imbalance. In general, testing and assessing FL algorithms can be a very difficult and complex task due to the distributed nature of the systems. In this work, a framework is proposed and implemented to assess FL algorithms in a more easy and scalable way. This framework is evaluated over a distributed edge-like environment managed by a container orchestration platform (i.e. Kubernetes).
Gradient descent is one of the most widely used iterative algorithms in modern statistical learning. However, its precise algorithmic dynamics in high-dimensional settings remain only partially understood, which has therefore limited its broader potential for statistical inference applications. This paper provides a precise, non-asymptotic distributional characterization of gradient descent iterates in a broad class of empirical risk minimization problems, in the so-called mean-field regime where the sample size is proportional to the signal dimension. Our non-asymptotic state evolution theory holds for both general non-convex loss functions and non-Gaussian data, and reveals the central role of two Onsager correction matrices that precisely characterize the non-trivial dependence among all gradient descent iterates in the mean-field regime. Although the Onsager correction matrices are typically analytically intractable, our state evolution theory facilitates a generic gradient descent inference algorithm that consistently estimates these matrices across a broad class of models. Leveraging this algorithm, we show that the state evolution can be inverted to construct (i) data-driven estimators for the generalization error of gradient descent iterates and (ii) debiased gradient descent iterates for inference of the unknown signal. Detailed applications to two canonical models--linear regression and (generalized) logistic regression--are worked out to illustrate model-specific features of our general theory and inference methods.
The integration of artificial intelligence (AI) into the workplace is advancing rapidly, necessitating robust metrics to evaluate its tangible impact on the labour market. Existing measures of AI occupational exposure largely focus on AI's theoretical potential to substitute or complement human labour on the basis of technical feasibility, providing limited insight into actual adoption and offering inadequate guidance for policymakers. To address this gap, we introduce the AI Startup Exposure (AISE) index-a novel metric based on occupational descriptions from O*NET and AI applications developed by startups funded by the Y Combinator accelerator. Our findings indicate that while high-skilled professions are theoretically highly exposed according to conventional metrics, they are heterogeneously targeted by startups. Roles involving routine organizational tasks-such as data analysis and office management-display significant exposure, while occupations involving tasks that are less amenable to AI automation due to ethical or high-stakes, more than feasibility, considerations -- such as judges or surgeons -- present lower AISE scores. By focusing on venture-backed AI applications, our approach offers a nuanced perspective on how AI is reshaping the labour market. It challenges the conventional assumption that high-skilled jobs uniformly face high AI risks, highlighting instead the role of today's AI players' societal desirability-driven and market-oriented choices as critical determinants of AI exposure. Contrary to fears of widespread job displacement, our findings suggest that AI adoption will be gradual and shaped by social factors as much as by the technical feasibility of AI applications. This framework provides a dynamic, forward-looking tool for policymakers and stakeholders to monitor AI's evolving impact and navigate the changing labour landscape.
Background: The standard regulatory approach to assess replication success is the two-trials rule, requiring both the original and the replication study to be significant with effect estimates in the same direction. The sceptical p-value was recently presented as an alternative method for the statistical assessment of the replicability of study results. Methods: We compare the statistical properties of the sceptical p-value and the two-trials rule. We illustrate the performance of the different methods using real-world evidence emulations of randomized, controlled trials (RCTs) conducted within the RCT DUPLICATE initiative. Results: The sceptical p-value depends not only on the two p-values, but also on sample size and effect size of the two studies. It can be calibrated to have the same Type-I error rate as the two-trials rule, but has larger power to detect an existing effect. In the application to the results from the RCT DUPLICATE initiative, the sceptical p-value leads to qualitatively similar results than the two-trials rule, but tends to show more evidence for treatment effects compared to the two-trials rule. Conclusion: The sceptical p-value represents a valid statistical measure to assess the replicability of study results and is especially useful in the context of real-world evidence emulations.
Runge-Kutta methods have an irreplaceable position among numerical methods designed to solve ordinary differential equations. Especially, implicit ones are suitable for approximating solutions of stiff initial value problems. We propose a new way of deriving coefficients of implicit Runge-Kutta methods. This approach based on repeated integrals yields both new and well-known Butcher's tableaux. We discuss the properties of newly derived methods and compare them with standard collocation implicit Runge-Kutta methods in a series of numerical experiments, including the Prothero-Robinson problem.
The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.