亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural networks can be significantly compressed by pruning, leading to sparse models requiring considerably less storage and floating-point operations while maintaining predictive performance. Model soups (Wortsman et al., 2022) improve generalization and out-of-distribution performance by averaging the parameters of multiple models into a single one without increased inference time. However, identifying models in the same loss basin to leverage both sparsity and parameter averaging is challenging, as averaging arbitrary sparse models reduces the overall sparsity due to differing sparse connectivities. In this work, we address these challenges by demonstrating that exploring a single retraining phase of Iterative Magnitude Pruning (IMP) with varying hyperparameter configurations, such as batch ordering or weight decay, produces models that are suitable for averaging and share the same sparse connectivity by design. Averaging these models significantly enhances generalization performance compared to their individual components. Building on this idea, we introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model of the previous phase. SMS maintains sparsity, exploits sparse network benefits being modular and fully parallelizable, and substantially improves IMP's performance. Additionally, we demonstrate that SMS can be adapted to enhance the performance of state-of-the-art pruning during training approaches.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Better · 得分 · Guidance · HTTPS ·
2023 年 8 月 22 日

Recent years have witnessed a rapid growth of deep generative models, with text-to-image models gaining significant attention from the public. However, existing models often generate images that do not align well with human preferences, such as awkward combinations of limbs and facial expressions. To address this issue, we collect a dataset of human choices on generated images from the Stable Foundation Discord channel. Our experiments demonstrate that current evaluation metrics for generative models do not correlate well with human choices. Thus, we train a human preference classifier with the collected dataset and derive a Human Preference Score (HPS) based on the classifier. Using HPS, we propose a simple yet effective method to adapt Stable Diffusion to better align with human preferences. Our experiments show that HPS outperforms CLIP in predicting human choices and has good generalization capability toward images generated from other models. By tuning Stable Diffusion with the guidance of HPS, the adapted model is able to generate images that are more preferred by human users. The project page is available here: //tgxs002.github.io/align_sd_web/ .

The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at //opendatalab.org.cn/WanJuan1.0.

Deep convolutional neural network (CNN) training via iterative optimization has had incredible success in finding optimal parameters. However, modern CNN architectures often contain millions of parameters. Thus, any given model for a single architecture resides in a massive parameter space. Models with similar loss could have drastically different characteristics such as adversarial robustness, generalizability, and quantization robustness. For deep learning on the edge, quantization robustness is often crucial. Finding a model that is quantization-robust can sometimes require significant efforts. Recent works using Graph Hypernetworks (GHN) have shown remarkable performance predicting high-performant parameters of varying CNN architectures. Inspired by these successes, we wonder if the graph representations of GHN-2 can be leveraged to predict quantization-robust parameters as well, which we call GHN-Q. We conduct the first-ever study exploring the use of graph hypernetworks for predicting parameters of unseen quantized CNN architectures. We focus on a reduced CNN search space and find that GHN-Q can in fact predict quantization-robust parameters for various 8-bit quantized CNNs. Decent quantized accuracies are observed even with 4-bit quantization despite GHN-Q not being trained on it. Quantized finetuning of GHN-Q at lower bitwidths may bring further improvements and is currently being explored.

The rapid expansion of foundation pre-trained models and their fine-tuned counterparts has significantly contributed to the advancement of machine learning. Leveraging pre-trained models to extract knowledge and expedite learning in real-world tasks, known as "Model Reuse", has become crucial in various applications. Previous research focuses on reusing models within a certain aspect, including reusing model weights, structures, and hypothesis spaces. This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend. ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference. This empowers deep learning practitioners to explore downstream tasks and identify the complementary advantages among different methods. ZhiJian is readily accessible at //github.com/zhangyikaii/lamda-zhijian facilitating seamless utilization of pre-trained models and streamlining the model reuse process for researchers and developers.

Learned image compression methods have shown superior rate-distortion performance and remarkable potential compared to traditional compression methods. Most existing learned approaches use stacked convolution or window-based self-attention for transform coding, which aggregate spatial information in a fixed range. In this paper, we focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding. The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform. With the adaptive aggregation strategy and the sharing weights mechanism, our method can achieve promising transform capability with acceptable model complexity. Besides, according to the recent progress of entropy model, we define a generalized coarse-to-fine entropy model, considering the coarse global context, the channel-wise, and the spatial context. Based on it, we introduce dynamic kernel in hyper-prior to generate more expressive global context. Furthermore, we propose an asymmetric spatial-channel entropy model according to the investigation of the spatial characteristics of the grouped latents. The asymmetric entropy model aims to reduce statistical redundancy while maintaining coding efficiency. Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.

Recent advancements in transformer-based speech representation models have greatly transformed speech processing. However, there has been limited research conducted on evaluating these models for speech emotion recognition (SER) across multiple languages and examining their internal representations. This article addresses these gaps by presenting a comprehensive benchmark for SER with eight speech representation models and six different languages. We conducted probing experiments to gain insights into inner workings of these models for SER. We find that using features from a single optimal layer of a speech model reduces the error rate by 32\% on average across seven datasets when compared to systems where features from all layers of speech models are used. We also achieve state-of-the-art results for German and Persian languages. Our probing results indicate that the middle layers of speech models capture the most important emotional information for speech emotion recognition.

As a type of valuable intellectual property (IP), deep neural network (DNN) models have been protected by techniques like watermarking. However, such passive model protection cannot fully prevent model abuse. In this work, we propose an active model IP protection scheme, namely NNSplitter, which actively protects the model by splitting it into two parts: the obfuscated model that performs poorly due to weight obfuscation, and the model secrets consisting of the indexes and original values of the obfuscated weights, which can only be accessed by authorized users with the support of the trusted execution environment. Experimental results demonstrate the effectiveness of NNSplitter, e.g., by only modifying 275 out of over 11 million (i.e., 0.002%) weights, the accuracy of the obfuscated ResNet-18 model on CIFAR-10 can drop to 10%. Moreover, NNSplitter is stealthy and resilient against norm clipping and fine-tuning attacks, making it an appealing solution for DNN model protection. The code is available at: //github.com/Tongzhou0101/NNSplitter.

This paper addresses the challenge of transferring the behavior expressivity style of a virtual agent to another one while preserving behaviors shape as they carry communicative meaning. Behavior expressivity style is viewed here as the qualitative properties of behaviors. We propose TranSTYLer, a multimodal transformer based model that synthesizes the multimodal behaviors of a source speaker with the style of a target speaker. We assume that behavior expressivity style is encoded across various modalities of communication, including text, speech, body gestures, and facial expressions. The model employs a style and content disentanglement schema to ensure that the transferred style does not interfere with the meaning conveyed by the source behaviors. Our approach eliminates the need for style labels and allows the generalization to styles that have not been seen during the training phase. We train our model on the PATS corpus, which we extended to include dialog acts and 2D facial landmarks. Objective and subjective evaluations show that our model outperforms state of the art models in style transfer for both seen and unseen styles during training. To tackle the issues of style and content leakage that may arise, we propose a methodology to assess the degree to which behavior and gestures associated with the target style are successfully transferred, while ensuring the preservation of the ones related to the source content.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司