亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Address translation is a performance bottleneck in data-intensive workloads due to large datasets and irregular access patterns that lead to frequent high-latency page table walks (PTWs). PTWs can be reduced by using (i) large hardware TLBs or (ii) large software-managed TLBs. Unfortunately, both solutions have significant drawbacks: increased access latency, power and area (for hardware TLBs), and costly memory accesses, the need for large contiguous memory blocks, and complex OS modifications (for software-managed TLBs). We present Victima, a new software-transparent mechanism that drastically increases the translation reach of the processor by leveraging the underutilized resources of the cache hierarchy. The key idea of Victima is to repurpose L2 cache blocks to store clusters of TLB entries, thereby providing an additional low-latency and high-capacity component that backs up the last-level TLB and thus reduces PTWs. Victima has two main components. First, a PTW cost predictor (PTW-CP) identifies costly-to-translate addresses based on the frequency and cost of the PTWs they lead to. Second, a TLB-aware cache replacement policy prioritizes keeping TLB entries in the cache hierarchy by considering (i) the translation pressure (e.g., last-level TLB miss rate) and (ii) the reuse characteristics of the TLB entries. Our evaluation results show that in native (virtualized) execution environments Victima improves average end-to-end application performance by 7.4% (28.7%) over the baseline four-level radix-tree-based page table design and by 6.2% (20.1%) over a state-of-the-art software-managed TLB, across 11 diverse data-intensive workloads. Victima (i) is effective in both native and virtualized environments, (ii) is completely transparent to application and system software, and (iii) incurs very small area and power overheads on a modern high-end CPU.

相關內容

The importance of qualitative parallel data in machine translation has long been determined but it has always been very difficult to obtain such in sufficient quantity for the majority of world languages, mainly because of the associated cost and also the lack of accessibility to these languages. Despite the potential for obtaining parallel datasets from online articles using automatic approaches, forensic investigations have found a lot of quality-related issues such as misalignment, and wrong language codes. In this work, we present a simple but qualitative parallel sentence aligner that carefully leveraged the closed-access Cohere multilingual embedding, a solution that ranked second in the just concluded #CoHereAIHack 2023 Challenge (see //ai6lagos.devpost.com). The proposed approach achieved $94.96$ and $54.83$ f1 scores on FLORES and MAFAND-MT, compared to $3.64$ and $0.64$ of LASER respectively. Our method also achieved an improvement of more than 5 BLEU scores over LASER, when the resulting datasets were used with MAFAND-MT dataset to train translation models. Our code and data are available for research purposes here (//github.com/abumafrim/Cohere-Align).

The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models. However, in real life applications these models often encounter scenarios that are inadequately represented in the data used for training. There are various reasons for the absence of sufficient data, ranging from time and cost constraints to ethical considerations. As a consequence, the reliable usage of these models, especially in safety-critical applications, is still a tremendous challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches. Knowledge augmented machine learning approaches offer the possibility of compensating for deficiencies, errors, or ambiguities in the data, thus increasing the generalization capability of the applied models. Even more, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-driven models with existing knowledge. The identified approaches are structured according to the categories knowledge integration, extraction and conformity. In particular, we address the application of the presented methods in the field of autonomous driving.

Indoor 3D object detection is an essential task in single image scene understanding, impacting spatial cognition fundamentally in visual reasoning. Existing works on 3D object detection from a single image either pursue this goal through independent predictions of each object or implicitly reason over all possible objects, failing to harness relational geometric information between objects. To address this problem, we propose a dynamic sparse graph pipeline named Explicit3D based on object geometry and semantics features. Taking the efficiency into consideration, we further define a relatedness score and design a novel dynamic pruning algorithm followed by a cluster sampling method for sparse scene graph generation and updating. Furthermore, our Explicit3D introduces homogeneous matrices and defines new relative loss and corner loss to model the spatial difference between target pairs explicitly. Instead of using ground-truth labels as direct supervision, our relative and corner loss are derived from the homogeneous transformation, which renders the model to learn the geometric consistency between objects. The experimental results on the SUN RGB-D dataset demonstrate that our Explicit3D achieves better performance balance than the-state-of-the-art.

Code clone detection is about finding out similar code fragments, which has drawn much attention in software engineering since it is important for software maintenance and evolution. Researchers have proposed many techniques and tools for source code clone detection, but current detection methods concentrate on analyzing or processing code samples individually without exploring the underlying connections among code samples. In this paper, we propose Gitor to capture the underlying connections among different code samples. Specifically, given a source code database, we first tokenize all code samples to extract the pre-defined individual information. After obtaining all samples individual information, we leverage them to build a large global sample graph where each node is a code sample or a type of individual information. Then we apply a node embedding technique on the global sample graph to extract all the samples vector representations. After collecting all code samples vectors, we can simply compare the similarity between any two samples to detect possible clone pairs. More importantly, since the obtained vector of a sample is from a global sample graph, we can combine it with its own code features to improve the code clone detection performance. To demonstrate the effectiveness of Gitor, we evaluate it on a widely used dataset namely BigCloneBench. Our experimental results show that Gitor has higher accuracy in terms of code clone detection and excellent execution time for inputs of various sizes compared to existing state-of-the-art tools. Moreover, we also evaluate the combination of Gitor with other traditional vector-based clone detection methods, the results show that the use of Gitor enables them detect more code clones with higher F1.

Neural network models often struggle with high-dimensional but small sample-size tabular datasets. One reason is that current weight initialisation methods assume independence between weights, which can be problematic when there are insufficient samples to estimate the model's parameters accurately. In such small data scenarios, leveraging additional structures can improve the model's performance and training stability. To address this, we propose GCondNet, a general approach to enhance neural networks by leveraging implicit structures present in tabular data. We create a graph between samples for each data dimension, and utilise Graph Neural Networks (GNNs) for extracting this implicit structure, and for conditioning the parameters of the first layer of an underlying predictor network. By creating many small graphs, GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network. We demonstrate the effectiveness of our method on 9 real-world datasets, where GCondNet outperforms 15 standard and state-of-the-art methods. The results show that GCondNet is a versatile framework for injecting graph-regularisation into various types of neural networks, including MLPs and tabular Transformers.

Learning representations through self-supervision on unlabeled data has proven highly effective for understanding diverse images. However, remote sensing images often have complex and densely populated scenes with multiple land objects and no clear foreground objects. This intrinsic property generates high object density, resulting in false positive pairs or missing contextual information in self-supervised learning. To address these problems, we propose a context-enhanced masked image modeling method (CtxMIM), a simple yet efficient MIM-based self-supervised learning for remote sensing image understanding. CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches. A context-enhanced generative branch is introduced to provide contextual information through context consistency constraints in the reconstruction. With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset without specific temporal or geographical constraints. Finally, extensive experiments show that features learned by CtxMIM outperform fully supervised and state-of-the-art self-supervised learning methods on various downstream tasks, including land cover classification, semantic segmentation, object detection, and instance segmentation. These results demonstrate that CtxMIM learns impressive remote sensing representations with high generalization and transferability. Code and data will be made public available.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

北京阿比特科技有限公司