Hypergraphs, with their capacity to depict high-order relationships, have emerged as a significant extension of traditional graphs. Although Graph Neural Networks (GNNs) have remarkable performance in graph representation learning, their extension to hypergraphs encounters challenges due to their intricate structures. Furthermore, current hypergraph transformers, a special variant of GNN, utilize semantic feature-based self-attention, ignoring topological attributes of nodes and hyperedges. To address these challenges, we propose a Topology-guided Hypergraph Transformer Network (THTN). In this model, we first formulate a hypergraph from a graph while retaining its structural essence to learn higher-order relations within the graph. Then, we design a simple yet effective structural and spatial encoding module to incorporate the topological and spatial information of the nodes into their representation. Further, we present a structure-aware self-attention mechanism that discovers the important nodes and hyperedges from both semantic and structural viewpoints. By leveraging these two modules, THTN crafts an improved node representation, capturing both local and global topological expressions. Extensive experiments conducted on node classification tasks demonstrate that the performance of the proposed model consistently exceeds that of the existing approaches.
Recommender systems are widely used in various real-world applications, but they often encounter the persistent challenge of the user cold-start problem. Cross-domain recommendation (CDR), which leverages user interactions from one domain to improve prediction performance in another, has emerged as a promising solution. However, users with similar preferences in the source domain may exhibit different interests in the target domain. Therefore, directly transferring embeddings may introduce irrelevant source-domain collaborative information. In this paper, we propose a novel graph-based disentangled contrastive learning framework to capture fine-grained user intent and filter out irrelevant collaborative information, thereby avoiding negative transfer. Specifically, for each domain, we use a multi-channel graph encoder to capture diverse user intents. We then construct the affinity graph in the embedding space and perform multi-step random walks to capture high-order user similarity relationships. Treating one domain as the target, we propose a disentangled intent-wise contrastive learning approach, guided by user similarity, to refine the bridging of user intents across domains. Extensive experiments on four benchmark CDR datasets demonstrate that DisCo consistently outperforms existing state-of-the-art baselines, thereby validating the effectiveness of both DisCo and its components.
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors. Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation. For an adversarial example, we aim to discriminate the perturbations as non-causative factors and make predictions only based on the label-causative factors. Concretely, we propose a casual diffusion model (CausalDiff) that adapts diffusion models for conditional data generation and disentangles the two types of casual factors by learning towards a novel casual information bottleneck objective. Empirically, CausalDiff has significantly outperformed state-of-the-art defense methods on various unseen attacks, achieving an average robustness of 86.39% (+4.01%) on CIFAR-10, 56.25% (+3.13%) on CIFAR-100, and 82.62% (+4.93%) on GTSRB (German Traffic Sign Recognition Benchmark). The code is available at //github.com/CAS-AISafetyBasicResearchGroup/CausalDiff
Electroencephalogram (EEG) signals are critical for detecting abnormal brain activity, but their high dimensionality and complexity pose significant challenges for effective analysis. In this paper, we propose CAE-T, a novel framework that combines a channelwise CNN-based autoencoder with a single-head transformer classifier for efficient EEG abnormality detection. The channelwise autoencoder compresses raw EEG signals while preserving channel independence, reducing computational costs and retaining biologically meaningful features. The compressed representations are then fed into the transformer-based classifier, which efficiently models long-term dependencies to distinguish between normal and abnormal signals. Evaluated on the TUH Abnormal EEG Corpus, the proposed model achieves 85.0% accuracy, 76.2% sensitivity, and 91.2% specificity at the per-case level, outperforming baseline models such as EEGNet, Deep4Conv, and FusionCNN. Furthermore, CAE-T requires only 202M FLOPs and 2.9M parameters, making it significantly more efficient than transformer-based alternatives. The framework retains interpretability through its channelwise design, demonstrating great potential for future applications in neuroscience research and clinical practice. The source code is available at //github.com/YossiZhao/CAE-T.
Recently, semantic communications have drawn great attention as the groundbreaking concept surpasses the limited capacity of Shannon's theory. Specifically, semantic communications probably become crucial in realizing visual tasks that demand massive network traffic. Although highly distinctive forms of visual semantics exist for computer vision tasks, a thorough investigation of what visual semantics can be transmitted in time and which one is required for completing different visual tasks has not yet been reported. To this end, we first scrutinize the achievable throughput in transmitting existing visual semantics through the limited wireless communication bandwidth. In addition, we further demonstrate the resulting performance of various visual tasks for each visual semantic. Based on the empirical testing, we suggest a task-adaptive selection of visual semantics is crucial for real-time semantic communications for visual tasks, where we transmit basic semantics (e.g., objects in the given image) for simple visual tasks, such as classification, and richer semantics (e.g., scene graphs) for complex tasks, such as image regeneration. To further improve transmission efficiency, we suggest a filtering method for scene graphs, which drops redundant information in the scene graph, thus allowing the sending of essential semantics for completing the given task. We confirm the efficacy of our task-adaptive semantic communication approach through extensive simulations in wireless channels, showing more than 45 times larger throughput over a naive transmission of original data. Our work can be reproduced at the following source codes: //github.com/jhpark2024/jhpark.github.io
Spiking Neural Network (SNN), as a brain-inspired and energy-efficient network, is currently facing the pivotal challenge of exploring a suitable and efficient learning framework. The predominant training methodologies, namely Spatial-Temporal Back-propagation (STBP) and ANN-SNN Conversion, are encumbered by substantial training overhead or pronounced inference latency, which impedes the advancement of SNNs in scaling to larger networks and navigating intricate application domains. In this work, we propose a novel parallel conversion learning framework, which establishes a mathematical mapping relationship between each time-step of the parallel spiking neurons and the cumulative spike firing rate. We theoretically validate the lossless and sorting properties of the conversion process, as well as pointing out the optimal shifting distance for each step. Furthermore, by integrating the above framework with the distribution-aware error calibration technique, we can achieve efficient conversion towards more general activation functions or training-free circumstance. Extensive experiments have confirmed the significant performance advantages of our method for various conversion cases under ultra-low time latency. To our best knowledge, this is the first work which jointly utilizes parallel spiking calculation and ANN-SNN Conversion, providing a highly promising approach for SNN supervised training.
The effective training and evaluation of retrieval systems require a substantial amount of relevance judgments, which are traditionally collected from human assessors -- a process that is both costly and time-consuming. Large Language Models (LLMs) have shown promise in generating relevance labels for search tasks, offering a potential alternative to manual assessments. Current approaches often rely on a single LLM, such as GPT-4, which, despite being effective, are expensive and prone to intra-model biases that can favour systems leveraging similar models. In this work, we introduce JudgeBlender, a framework that employs smaller, open-source models to provide relevance judgments by combining evaluations across multiple LLMs (LLMBlender) or multiple prompts (PromptBlender). By leveraging the LLMJudge benchmark [18], we compare JudgeBlender with state-of-the-art methods and the top performers in the LLMJudge challenge. Our results show that JudgeBlender achieves competitive performance, demonstrating that very large models are often unnecessary for reliable relevance assessments.
As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. This paper introduces the first large-scale Urdu IR dataset, created by translating the MS MARCO dataset through machine translation. We establish baseline results through zero-shot learning for IR in Urdu and subsequently apply the mMARCO multilingual IR methodology to this newly translated dataset. Our findings demonstrate that the fine-tuned model (Urdu-mT5-mMARCO) achieves a Mean Reciprocal Rank (MRR@10) of 0.247 and a Recall@10 of 0.439, representing significant improvements over zero-shot results and showing the potential for expanding IR access for Urdu speakers. By bridging access gaps for speakers of low-resource languages, this work not only advances multilingual IR research but also emphasizes the ethical and societal importance of inclusive IR technologies. This work provides valuable insights into the challenges and solutions for improving language representation and lays the groundwork for future research, especially in South Asian languages, which can benefit from the adaptable methods used in this study.
Data rebalancing techniques, including oversampling and undersampling, are a common approach to addressing the challenges of imbalanced data. To tackle unresolved problems related to both oversampling and undersampling, we propose a new undersampling approach that: (i) avoids the pitfalls of noise and overlap caused by synthetic data and (ii) avoids the pitfall of under-fitting caused by random undersampling. Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss. Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it. In so doing, our approach rejects majority datapoints redundant to datapoints already accepted and, thereby, finds an optimal subset of majority training data for classification. The accept/reject component of our algorithm is motivated by a bilevel optimization problem uniquely formulated to identify the optimal training set we seek. Experimental results show our proposed technique with F1 scores up to 10% higher than state-of-the-art methods.
Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.