Self-occlusion is common when capturing people in the wild, where the performer do not follow predefined motion scripts. This challenges existing monocular human reconstruction systems that assume full body visibility. We introduce Self-Occluded Avatar Recovery (SOAR), a method for complete human reconstruction from partial observations where parts of the body are entirely unobserved. SOAR leverages structural normal prior and generative diffusion prior to address such an ill-posed reconstruction problem. For structural normal prior, we model human with an reposable surfel model with well-defined and easily readable shapes. For generative diffusion prior, we perform an initial reconstruction and refine it using score distillation. On various benchmarks, we show that SOAR performs favorably than state-of-the-art reconstruction and generation methods, and on-par comparing to concurrent works. Additional video results and code are available at //soar-avatar.github.io/.
Detecting sarcasm effectively requires a nuanced understanding of context, including vocal tones and facial expressions. The progression towards multimodal computational methods in sarcasm detection, however, faces challenges due to the scarcity of data. To address this, we present AMuSeD (Attentive deep neural network for MUltimodal Sarcasm dEtection incorporating bi-modal Data augmentation). This approach utilizes the Multimodal Sarcasm Detection Dataset (MUStARD) and introduces a two-phase bimodal data augmentation strategy. The first phase involves generating varied text samples through Back Translation from several secondary languages. The second phase involves the refinement of a FastSpeech 2-based speech synthesis system, tailored specifically for sarcasm to retain sarcastic intonations. Alongside a cloud-based Text-to-Speech (TTS) service, this Fine-tuned FastSpeech 2 system produces corresponding audio for the text augmentations. We also investigate various attention mechanisms for effectively merging text and audio data, finding self-attention to be the most efficient for bimodal integration. Our experiments reveal that this combined augmentation and attention approach achieves a significant F1-score of 81.0% in text-audio modalities, surpassing even models that use three modalities from the MUStARD dataset.
The growth of social networks makes toxic content spread rapidly. Hate speech detection is a task to help decrease the number of harmful comments. With the diversity in the hate speech created by users, it is necessary to interpret the hate speech besides detecting it. Hence, we propose a methodology to construct a system for targeted hate speech detection from online streaming texts from social media. We first introduce the ViTHSD - a targeted hate speech detection dataset for Vietnamese Social Media Texts. The dataset contains 10K comments, each comment is labeled to specific targets with three levels: clean, offensive, and hate. There are 5 targets in the dataset, and each target is labeled with the corresponding level manually by humans with strict annotation guidelines. The inter-annotator agreement obtained from the dataset is 0.45 by Cohen's Kappa index, which is indicated as a moderate level. Then, we construct a baseline for this task by combining the Bi-GRU-LSTM-CNN with the pre-trained language model to leverage the power of text representation of BERTology. Finally, we suggest a methodology to integrate the baseline model for targeted hate speech detection into the online streaming system for practical application in preventing hateful and offensive content on social media.
Vision-Language Models (VLMs) have shown promising capabilities in handling various multimodal tasks, yet they struggle in long-context scenarios, particularly in tasks involving videos, high-resolution images, or lengthy image-text documents. In our work, we first conduct an empirical analysis of the long-context capabilities of VLMs using our augmented long-context multimodal datasets. Our findings reveal that directly applying the positional encoding mechanism used for textual tokens to visual tokens is suboptimal, and VLM performance degrades sharply when the position encoding exceeds the model's context window. To address this, we propose Variable Visual Position Encoding (V2PE), a novel positional encoding approach that employs variable and smaller increments for visual tokens, enabling more efficient management of long multimodal sequences. Our experiments demonstrate the effectiveness of V2PE to enhances VLMs' ability to effectively understand and reason over long multimodal contexts. We further integrate V2PE with our augmented long-context multimodal datasets to fine-tune the open-source VLM, InternVL2. The fine-tuned model achieves strong performance on both standard and long-context multimodal tasks. Notably, when the sequence length of the training dataset is increased to 256K tokens, the model is capable of processing multimodal sequences up to 1M tokens, highlighting its potential for real-world long-context applications.
Significant achievements in personalization of diffusion models have been witnessed. Conventional tuning-free methods mostly encode multiple reference images by averaging their image embeddings as the injection condition, but such an image-independent operation cannot perform interaction among images to capture consistent visual elements within multiple references. Although the tuning-based Low-Rank Adaptation (LoRA) can effectively extract consistent elements within multiple images through the training process, it necessitates specific finetuning for each distinct image group. This paper introduces EasyRef, a novel plug-and-play adaptation method that enables diffusion models to be conditioned on multiple reference images and the text prompt. To effectively exploit consistent visual elements within multiple images, we leverage the multi-image comprehension and instruction-following capabilities of the multimodal large language model (MLLM), prompting it to capture consistent visual elements based on the instruction. Besides, injecting the MLLM's representations into the diffusion process through adapters can easily generalize to unseen domains, mining the consistent visual elements within unseen data. To mitigate computational costs and enhance fine-grained detail preservation, we introduce an efficient reference aggregation strategy and a progressive training scheme. Finally, we introduce MRBench, a new multi-reference image generation benchmark. Experimental results demonstrate EasyRef surpasses both tuning-free methods like IP-Adapter and tuning-based methods like LoRA, achieving superior aesthetic quality and robust zero-shot generalization across diverse domains.
Large Vision-Language Models (VLMs) have been extended to understand both images and videos. Visual token compression is leveraged to reduce the considerable token length of visual inputs. To meet the needs of different tasks, existing high-performance models usually process images and videos separately with different token compression strategies, limiting the capabilities of combining images and videos. To this end, we extend each image into a "static" video and introduce a unified token compression strategy called Progressive Visual Token Compression (PVC), where the tokens of each frame are progressively encoded and adaptively compressed to supplement the information not extracted from previous frames. Video tokens are efficiently compressed with exploiting the inherent temporal redundancy. Images are repeated as static videos, and the spatial details can be gradually supplemented in multiple frames. PVC unifies the token compressing of images and videos. With a limited number of tokens per frame (64 tokens by default), spatial details and temporal changes can still be preserved. Experiments show that our model achieves state-of-the-art performance across various video understanding benchmarks, including long video tasks and fine-grained short video tasks. Meanwhile, our unified token compression strategy incurs no performance loss on image benchmarks, particularly in detail-sensitive tasks.
Recently, radiance field rendering, such as 3D Gaussian Splatting (3DGS), has shown immense potential in VR content creation due to its high-quality rendering and efficient production process. However, existing physics-based interaction systems for 3DGS can only perform simple and non-realistic simulations or demand extensive user input for complex scenes, primarily due to the absence of scene understanding. In this paper, we propose LIVE-GS, a highly realistic interactive VR system powered by LLM. After object-aware GS reconstruction, we prompt GPT-4o to analyze the physical properties of objects in the scene, which are used to guide physical simulations consistent with real phenomena. We also design a GPT-assisted GS inpainting module to fill the unseen area covered by manipulative objects. To perform a precise segmentation of Gaussian kernels, we propose a feature-mask segmentation strategy. To enable rich interaction, we further propose a computationally efficient physical simulation framework through an PBD-based unified interpolation method, supporting various physical forms such as rigid body, soft body, and granular materials. Our experimental results show that with the help of LLM's understanding and enhancement of scenes, our VR system can support complex and realistic interactions without additional manual design and annotation.
Honour based abuse covers a wide range of family abuse including female genital mutilation and forced marriage. Safeguarding professionals need to identify where abuses are happening in their local community to best support those at risk of these crimes and take preventative action. However, there is little local data about these kinds of crime. To tackle this problem, we ran comparative judgement surveys to map abuses at local level, where participants where shown pairs of wards and asked which had a higher rate of honour based abuse. In previous comparative judgement studies, participants reported fatigue associated with comparisons between areas with similar levels of abuse. Allowing for tied comparisons reduces fatigue, but increase the computational complexity when fitting the model. We designed an efficient Markov Chain Monte Carlo algorithm to fit a model with ties, allowing for a wide range of prior distributions on the model parameters. Working with South Yorkshire Police and Oxford Against Cutting, we mapped the risk of honour based abuse at community level in two counties in the UK.
The development of Large Language Models (LLMs) relies on extensive text corpora, which are often unevenly distributed across languages. This imbalance results in LLMs performing significantly better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate. Currently, there is a lack of quantitative methods to evaluate the performance of LLMs in these low-resource languages. To address this gap, we propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations. By comparing the LLM's internal representation of various languages against a baseline derived from English, we can assess the model's multilingual capabilities in a robust and language-agnostic manner. Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores, underscoring the effectiveness of our metric in assessing language-specific capabilities. Besides, the experiments show that there is a strong correlation between the LLM's performance in different languages and the proportion of those languages in its pre-training corpus. These insights underscore the efficacy of the Language Ranker as a tool for evaluating LLM performance across different languages, particularly those with limited resources.
As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques. In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.