亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating tests that can reveal performance issues in large and complex software systems within a reasonable amount of time is a challenging task. On one hand, there are numerous combinations of input data values to explore. On the other hand, we have a limited test budget to execute tests. What makes this task even more difficult is the lack of access to source code and the internal details of these systems. In this paper, we present an automated test generation method called ACTA for black-box performance testing. ACTA is based on active learning, which means that it does not require a large set of historical test data to learn about the performance characteristics of the system under test. Instead, it dynamically chooses the tests to execute using uncertainty sampling. ACTA relies on a conditional variant of generative adversarial networks,and facilitates specifying performance requirements in terms of conditions and generating tests that address those conditions.We have evaluated ACTA on a benchmark web application, and the experimental results indicate that this method is comparable with random testing, and two other machine learning methods,i.e. PerfXRL and DN.

相關內容

The paper describes an online deep learning algorithm for the adaptive modulation and coding in 5G Massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then is incrementally retrained by the service feedback of its output. We show the advantage of our solution over the state-of-the-art Q-Learning approach. We provide system-level simulation results to support this conclusion in various scenarios with different channel characteristics and different user speeds. Compared with traditional OLLA our algorithm shows 10% to 20% improvement of user throughput in full buffer case.

Few-shot and one-shot learning have been the subject of active and intensive research in recent years, with mounting evidence pointing to successful implementation and exploitation of few-shot learning algorithms in practice. Classical statistical learning theories do not fully explain why few- or one-shot learning is at all possible since traditional generalisation bounds normally require large training and testing samples to be meaningful. This sharply contrasts with numerous examples of successful one- and few-shot learning systems and applications. In this work we present mathematical foundations for a theory of one-shot and few-shot learning and reveal conditions specifying when such learning schemes are likely to succeed. Our theory is based on intrinsic properties of high-dimensional spaces. We show that if the ambient or latent decision space of a learning machine is sufficiently high-dimensional than a large class of objects in this space can indeed be easily learned from few examples provided that certain data non-concentration conditions are met.

Deep learning systems are typically designed to perform for a wide range of test inputs. For example, deep learning systems in autonomous cars are supposed to deal with traffic situations for which they were not specifically trained. In general, the ability to cope with a broad spectrum of unseen test inputs is called generalization. Generalization is definitely important in applications where the possible test inputs are known but plentiful or simply unknown, but there are also cases where the possible inputs are few and unlabeled but known beforehand. For example, medicine is currently interested in targeting treatments to individual patients; the number of patients at any given time is usually small (typically one), their diagnoses/responses/... are still unknown, but their general characteristics (such as genome information, protein levels in the blood, and so forth) are known before the treatment. We propose to call deep learning in such applications targeted deep learning. In this paper, we introduce a framework for targeted deep learning, and we devise and test an approach for adapting standard pipelines to the requirements of targeted deep learning. The approach is very general yet easy to use: it can be implemented as a simple data-preprocessing step. We demonstrate on a variety of real-world data that our approach can indeed render standard deep learning faster and more accurate when the test inputs are known beforehand.

Federated Learning (FL) is an emerging direction in distributed machine learning (ML) that enables in-situ model training and testing on edge data. Despite having the same end goals as traditional ML, FL executions differ significantly in scale, spanning thousands to millions of participating devices. As a result, data characteristics and device capabilities vary widely across clients. Yet, existing efforts randomly select FL participants, which leads to poor model and system efficiency. In this paper, we propose Oort to improve the performance of federated training and testing with guided participant selection. With an aim to improve time-to-accuracy performance in model training, Oort prioritizes the use of those clients who have both data that offers the greatest utility in improving model accuracy and the capability to run training quickly. To enable FL developers to interpret their results in model testing, Oort enforces their requirements on the distribution of participant data while improving the duration of federated testing by cherry-picking clients. Our evaluation shows that, compared to existing participant selection mechanisms, Oort improves time-to-accuracy performance by 1.2x-14.1x and final model accuracy by 1.3%-9.8%, while efficiently enforcing developer-specified model testing criteria at the scale of millions of clients.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Contrary to popular belief, Optical Character Recognition (OCR) remains a challenging problem when text occurs in unconstrained environments, like natural scenes, due to geometrical distortions, complex backgrounds, and diverse fonts. In this paper, we present a segmentation-free OCR system that combines deep learning methods, synthetic training data generation, and data augmentation techniques. We render synthetic training data using large text corpora and over 2000 fonts. To simulate text occurring in complex natural scenes, we augment extracted samples with geometric distortions and with a proposed data augmentation technique - alpha-compositing with background textures. Our models employ a convolutional neural network encoder to extract features from text images. Inspired by the recent progress in neural machine translation and language modeling, we examine the capabilities of both recurrent and convolutional neural networks in modeling the interactions between input elements.

Deep reinforcement learning suggests the promise of fully automated learning of robotic control policies that directly map sensory inputs to low-level actions. However, applying deep reinforcement learning methods on real-world robots is exceptionally difficult, due both to the sample complexity and, just as importantly, the sensitivity of such methods to hyperparameters. While hyperparameter tuning can be performed in parallel in simulated domains, it is usually impractical to tune hyperparameters directly on real-world robotic platforms, especially legged platforms like quadrupedal robots that can be damaged through extensive trial-and-error learning. In this paper, we develop a stable variant of the soft actor-critic deep reinforcement learning algorithm that requires minimal hyperparameter tuning, while also requiring only a modest number of trials to learn multilayer neural network policies. This algorithm is based on the framework of maximum entropy reinforcement learning, and automatically trades off exploration against exploitation by dynamically and automatically tuning a temperature parameter that determines the stochasticity of the policy. We show that this method achieves state-of-the-art performance on four standard benchmark environments. We then demonstrate that it can be used to learn quadrupedal locomotion gaits on a real-world Minitaur robot, learning to walk from scratch directly in the real world in two hours of training.

Recent years have witnessed significant progresses in deep Reinforcement Learning (RL). Empowered with large scale neural networks, carefully designed architectures, novel training algorithms and massively parallel computing devices, researchers are able to attack many challenging RL problems. However, in machine learning, more training power comes with a potential risk of more overfitting. As deep RL techniques are being applied to critical problems such as healthcare and finance, it is important to understand the generalization behaviors of the trained agents. In this paper, we conduct a systematic study of standard RL agents and find that they could overfit in various ways. Moreover, overfitting could happen "robustly": commonly used techniques in RL that add stochasticity do not necessarily prevent or detect overfitting. In particular, the same agents and learning algorithms could have drastically different test performance, even when all of them achieve optimal rewards during training. The observations call for more principled and careful evaluation protocols in RL. We conclude with a general discussion on overfitting in RL and a study of the generalization behaviors from the perspective of inductive bias.

Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations can cause proficient but narrowly-learned policies to fail at test time. In this work, we propose to learn how to quickly and effectively adapt online to new situations as well as to perturbations. To enable sample-efficient meta-learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach trains a global model such that, when combined with recent data, the model can be be rapidly adapted to the local context. Our experiments demonstrate that our approach can enable simulated agents to adapt their behavior online to novel terrains, to a crippled leg, and in highly-dynamic environments.

During recent years, active learning has evolved into a popular paradigm for utilizing user's feedback to improve accuracy of learning algorithms. Active learning works by selecting the most informative sample among unlabeled data and querying the label of that point from user. Many different methods such as uncertainty sampling and minimum risk sampling have been utilized to select the most informative sample in active learning. Although many active learning algorithms have been proposed so far, most of them work with binary or multi-class classification problems and therefore can not be applied to problems in which only samples from one class as well as a set of unlabeled data are available. Such problems arise in many real-world situations and are known as the problem of learning from positive and unlabeled data. In this paper we propose an active learning algorithm that can work when only samples of one class as well as a set of unlabelled data are available. Our method works by separately estimating probability desnity of positive and unlabeled points and then computing expected value of informativeness to get rid of a hyper-parameter and have a better measure of informativeness./ Experiments and empirical analysis show promising results compared to other similar methods.

北京阿比特科技有限公司