This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such attacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.
Federated learning is an emerging privacy-preserving AI technique where clients (i.e., organisations or devices) train models locally and formulate a global model based on the local model updates without transferring local data externally. However, federated learning systems struggle to achieve trustworthiness and embody responsible AI principles. In particular, federated learning systems face accountability and fairness challenges due to multi-stakeholder involvement and heterogeneity in client data distribution. To enhance the accountability and fairness of federated learning systems, we present a blockchain-based trustworthy federated learning architecture. We first design a smart contract-based data-model provenance registry to enable accountability. Additionally, we propose a weighted fair data sampler algorithm to enhance fairness in training data. We evaluate the proposed approach using a COVID-19 X-ray detection use case. The evaluation results show that the approach is feasible to enable accountability and improve fairness. The proposed algorithm can achieve better performance than the default federated learning setting in terms of the model's generalisation and accuracy.
As a disruptive technology that originates from cryptocurrency, blockchain provides a trusted platform to facilitate industrial IoT (IIoT) applications. However, implementing a blockchain platform in IIoT scenarios confronts various security challenges due to the rigorous deployment condition. To this end, we present a novel design of secure blockchain based on trusted computing hardware for IIoT applications. Specifically, we employ the trusted execution environment (TEE) module and a customized security chip to safeguard the blockchain against different attacking vectors. Furthermore, we implement the proposed secure IIoT blockchain on the ARM-based embedded device and build a small-scale IIoT network to evaluate its performance. Our experimental results show that the secure blockchain platform achieves a high throughput (150TPS) with low transaction confirmation delay (below 66ms), demonstrating its feasibility in practical IIoT scenarios. Finally, we outline the open challenges and future research directions.
In the current world, the Internet is being used almost everywhere. With the rise of IoT technology, which is one of the most used technologies, billions of IoT devices are interconnected over the Internet. However, DoS/DDoS attacks are the most frequent and perilous threat to this growing technology. New types of DDoS attacks are highly advanced and complicated, and it is almost impossible to detect or mitigate by the existing intrusion detection systems and traditional methods. Fortunately, Big Data, Data mining, and Machine Learning technologies make it possible to detect DDoS traffic effectively. This paper suggests a DDoS detection model based on data mining and machine learning techniques. For writing this paper, the latest available Dataset, CICDDoS2019, experimented with the most popular machine learning algorithms and specified the most correlated features with predicted classes are being used. It is discovered that AdaBoost and XGBoost were extraordinarily accurate and correctly predicted the type of network traffic with 100% accuracy. Future research can be extended by enhancing the model for multiclassification of different DDoS attack types and testing hybrid algorithms and newer datasets on this model.
Child Sexual Abuse Media (CSAM) is any visual record of a sexually-explicit activity involving minors. CSAM impacts victims differently from the actual abuse because the distribution never ends, and images are permanent. Machine learning-based solutions can help law enforcement quickly identify CSAM and block digital distribution. However, collecting CSAM imagery to train machine learning models has many ethical and legal constraints, creating a barrier to research development. With such restrictions in place, the development of CSAM machine learning detection systems based on file metadata uncovers several opportunities. Metadata is not a record of a crime, and it does not have legal restrictions. Therefore, investing in detection systems based on metadata can increase the rate of discovery of CSAM and help thousands of victims. We propose a framework for training and evaluating deployment-ready machine learning models for CSAM identification. Our framework provides guidelines to evaluate CSAM detection models against intelligent adversaries and models' performance with open data. We apply the proposed framework to the problem of CSAM detection based on file paths. In our experiments, the best-performing model is based on convolutional neural networks and achieves an accuracy of 0.97. Our evaluation shows that the CNN model is robust against offenders actively trying to evade detection by evaluating the model against adversarially modified data. Experiments with open datasets confirm that the model generalizes well and is deployment-ready.
Machine learning models often encounter samples that are diverged from the training distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently assign that sample to an in-class label significantly compromises the reliability of a model. The problem has gained significant attention due to its importance for safety deploying models in open-world settings. Detecting OOD samples is challenging due to the intractability of modeling all possible unknown distributions. To date, several research domains tackle the problem of detecting unfamiliar samples, including anomaly detection, novelty detection, one-class learning, open set recognition, and out-of-distribution detection. Despite having similar and shared concepts, out-of-distribution, open-set, and anomaly detection have been investigated independently. Accordingly, these research avenues have not cross-pollinated, creating research barriers. While some surveys intend to provide an overview of these approaches, they seem to only focus on a specific domain without examining the relationship between different domains. This survey aims to provide a cross-domain and comprehensive review of numerous eminent works in respective areas while identifying their commonalities. Researchers can benefit from the overview of research advances in different fields and develop future methodology synergistically. Furthermore, to the best of our knowledge, while there are surveys in anomaly detection or one-class learning, there is no comprehensive or up-to-date survey on out-of-distribution detection, which our survey covers extensively. Finally, having a unified cross-domain perspective, we discuss and shed light on future lines of research, intending to bring these fields closer together.
Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.
Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of users. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an author's history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.
Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.
Currently, the neural network architecture design is mostly guided by the \emph{indirect} metric of computation complexity, i.e., FLOPs. However, the \emph{direct} metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical \emph{guidelines} for efficient network design. Accordingly, a new architecture is presented, called \emph{ShuffleNet V2}. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.