The rapid development of deep learning techniques, improved computational power, and the availability of vast training data have led to significant advancements in pre-trained models and large language models (LLMs). Pre-trained models based on architectures such as BERT and Transformer, as well as LLMs like ChatGPT, have demonstrated remarkable language capabilities and found applications in Software engineering. Software engineering tasks can be divided into many categories, among which generative tasks are the most concern by researchers, where pre-trained models and LLMs possess powerful language representation and contextual awareness capabilities, enabling them to leverage diverse training data and adapt to generative tasks through fine-tuning, transfer learning, and prompt engineering. These advantages make them effective tools in generative tasks and have demonstrated excellent performance. In this paper, we present a comprehensive literature review of generative tasks in SE using pre-trained models and LLMs. We accurately categorize SE generative tasks based on software engineering methodologies and summarize the advanced pre-trained models and LLMs involved, as well as the datasets and evaluation metrics used. Additionally, we identify key strengths, weaknesses, and gaps in existing approaches, and propose potential research directions. This review aims to provide researchers and practitioners with an in-depth analysis and guidance on the application of pre-trained models and LLMs in generative tasks within SE.
In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of-the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.
Directly parameterizing and learning gradients of functions has widespread significance, with specific applications in optimization, generative modeling, and optimal transport. This paper introduces gradient networks (GradNets): novel neural network architectures that parameterize gradients of various function classes. GradNets exhibit specialized architectural constraints that ensure correspondence to gradient functions. We provide a comprehensive GradNet design framework that includes methods for transforming GradNets into monotone gradient networks (mGradNets), which are guaranteed to represent gradients of convex functions. We establish the approximation capabilities of the proposed GradNet and mGradNet. Our results demonstrate that these networks universally approximate the gradients of (convex) functions. Furthermore, these networks can be customized to correspond to specific spaces of (monotone) gradient functions, including gradients of transformed sums of (convex) ridge functions. Our analysis leads to two distinct GradNet architectures, GradNet-C and GradNet-M, and we describe the corresponding monotone versions, mGradNet-C and mGradNet-M. Our empirical results show that these architectures offer efficient parameterizations and outperform popular methods in gradient field learning tasks.
We present a nonparametric construction for deep learning compatible modern Hopfield models and utilize this framework to debut an efficient variant. Our key contribution stems from interpreting the memory storage and retrieval processes in modern Hopfield models as a nonparametric regression problem subject to a set of query-memory pairs. Crucially, our framework not only recovers the known results from the original dense modern Hopfield model but also fills the void in the literature regarding efficient modern Hopfield models, by introducing \textit{sparse-structured} modern Hopfield models with sub-quadratic complexity. We establish that this sparse model inherits the appealing theoretical properties of its dense analogue -- connection with transformer attention, fixed point convergence and exponential memory capacity -- even without knowing details of the Hopfield energy function. Additionally, we showcase the versatility of our framework by constructing a family of modern Hopfield models as extensions, including linear, random masked, top-$K$ and positive random feature modern Hopfield models. Empirically, we validate the efficacy of our framework in both synthetic and realistic settings.
With the rise of computational social science, many scholars utilize data analysis and natural language processing tools to analyze social media, news articles, and other accessible data sources for examining political and social discourse. Particularly, the study of the emergence of echo-chambers due to the dissemination of specific information has become a topic of interest in mixed methods research areas. In this paper, we analyze data collected from two news portals, Breitbart News (BN) and New York Times (NYT) to prove the hypothesis that the formation of echo-chambers can be partially explained on the level of an individual information consumption rather than a collective topology of individuals' social networks. Our research findings are presented through knowledge graphs, utilizing a dataset spanning 11.5 years gathered from BN and NYT media portals. We demonstrate that the application of knowledge representation techniques to the aforementioned news streams highlights, contrary to common assumptions, shows relative "internal" neutrality of both sources and polarizing attitude towards a small fraction of entities. Additionally, we argue that such characteristics in information sources lead to fundamental disparities in audience worldviews, potentially acting as a catalyst for the formation of echo-chambers.
The emergence of differentiable simulators enabling analytic gradient computation has motivated a new wave of learning algorithms that hold the potential to significantly increase sample efficiency over traditional Reinforcement Learning (RL) methods. While recent research has demonstrated performance gains in scenarios with comparatively smooth dynamics and, thus, smooth optimization landscapes, research on leveraging differentiable simulators for contact-rich scenarios, such as legged locomotion, is scarce. This may be attributed to the discontinuous nature of contact, which introduces several challenges to optimizing with analytic gradients. The purpose of this paper is to determine if analytic gradients can be beneficial even in the face of contact. Our investigation focuses on the effects of different soft and hard contact models on the learning process, examining optimization challenges through the lens of contact simulation. We demonstrate the viability of employing analytic gradients to learn physically plausible locomotion skills with a quadrupedal robot using Short-Horizon Actor-Critic (SHAC), a learning algorithm leveraging analytic gradients, and draw a comparison to a state-of-the-art RL algorithm, Proximal Policy Optimization (PPO), to understand the benefits of analytic gradients.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.