亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been a longstanding belief that generation can facilitate a true understanding of visual data. In line with this, we revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models. While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE). Our approach is capable of (i) serving as a strong initialization for downstream recognition tasks, (ii) conducting high-quality image inpainting, and (iii) being effortlessly extended to video where it produces state-of-the-art classification accuracy. We further perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.

相關內容

自動編碼器是一種人工神經網絡,用于以無監督的方式學習有效的數據編碼。自動編碼器的目的是通過訓練網絡忽略信號“噪聲”來學習一組數據的表示(編碼),通常用于降維。與簡化方面一起,學習了重構方面,在此,自動編碼器嘗試從簡化編碼中生成盡可能接近其原始輸入的表示形式,從而得到其名稱。基本模型存在幾種變體,其目的是迫使學習的輸入表示形式具有有用的屬性。自動編碼器可有效地解決許多應用問題,從面部識別到獲取單詞的語義。

Particle-based deep generative models, such as gradient flows and score-based diffusion models, have recently gained traction thanks to their striking performance. Their principle of displacing particle distributions by differential equations is conventionally seen as opposed to the previously widespread generative adversarial networks (GANs), which involve training a pushforward generator network. In this paper, we challenge this interpretation and propose a novel framework that unifies particle and adversarial generative models by framing generator training as a generalization of particle models. This suggests that a generator is an optional addition to any such generative model. Consequently, integrating a generator into a score-based diffusion model and training a GAN without a generator naturally emerge from our framework. We empirically test the viability of these original models as proofs of concepts of potential applications of our framework.

Reconstruction-based methods have struggled to achieve competitive performance on anomaly detection. In this paper, we introduce Denoising Diffusion Anomaly Detection (DDAD). We propose a novel denoising process for image reconstruction conditioned on a target image. This results in a coherent restoration that closely resembles the target image. Subsequently, our anomaly detection framework leverages this conditioning where the target image is set as the input image to guide the denoising process, leading to defectless reconstruction while maintaining nominal patterns. We localise anomalies via a pixel-wise and feature-wise comparison of the input and reconstructed image. Finally, to enhance the effectiveness of feature comparison, we introduce a domain adaptation method that utilises generated examples from our conditioned denoising process to fine-tune the feature extractor. The veracity of the approach is demonstrated on various datasets including MVTec and VisA benchmarks, achieving state-of-the-art results of 99.5% and 99.3% image-level AUROC respectively.

Low-dose computed tomography (CT) image denoising is crucial in medical image computing. Recent years have been remarkable improvement in deep learning-based methods for this task. However, training deep denoising neural networks requires low-dose and normal-dose CT image pairs, which are difficult to obtain in the clinic settings. To address this challenge, we propose a novel fully unsupervised method for low-dose CT image denoising, which is based on denoising diffusion probabilistic model -- a powerful generative model. First, we train an unconditional denoising diffusion probabilistic model capable of generating high-quality normal-dose CT images from random noise. Subsequently, the probabilistic priors of the pre-trained diffusion model are incorporated into a Maximum A Posteriori (MAP) estimation framework for iteratively solving the image denoising problem. Our method ensures the diffusion model produces high-quality normal-dose CT images while keeping the image content consistent with the input low-dose CT images. We evaluate our method on a widely used low-dose CT image denoising benchmark, and it outperforms several supervised low-dose CT image denoising methods in terms of both quantitative and visual performance.

We propose an unsupervised speech-to-speech translation (S2ST) system that does not rely on parallel data between the source and target languages. Our approach maps source and target language speech signals into automatically discovered, discrete units and reformulates the problem as unsupervised unit-to-unit machine translation. We develop a three-step training procedure that involves (a) pre-training an unit-based encoder-decoder language model with a denoising objective (b) training it with word-by-word translated utterance pairs created by aligning monolingual text embedding spaces and (c) running unsupervised backtranslation bootstrapping off of the initial translation model. Our approach avoids mapping the speech signal into text and uses speech-to-unit and unit-to-speech models instead of automatic speech recognition and text to speech models. We evaluate our model on synthetic-speaker Europarl-ST English-German and German-English evaluation sets, finding that unit-based translation is feasible under this constrained scenario, achieving 9.29 ASR-BLEU in German to English and 8.07 in English to German.

Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.

Inspired by the success of transformer-based pre-training methods on natural language tasks and further computer vision tasks, researchers have begun to apply transformer to video processing. This survey aims to give a comprehensive overview on transformer-based pre-training methods for Video-Language learning. We first briefly introduce the transformer tructure as the background knowledge, including attention mechanism, position encoding etc. We then describe the typical paradigm of pre-training & fine-tuning on Video-Language processing in terms of proxy tasks, downstream tasks and commonly used video datasets. Next, we categorize transformer models into Single-Stream and Multi-Stream structures, highlight their innovations and compare their performances. Finally, we analyze and discuss the current challenges and possible future research directions for Video-Language pre-training.

Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of pre-trained transformer based models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. On three classification benchmarks, pre-trained Seq2Seq model outperforms other models. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

北京阿比特科技有限公司