亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multilingual machine translation (MMT), trained on a mixture of parallel and monolingual data, is key for improving translation in low-resource language pairs. However, the literature offers conflicting results on the performance of different methods. To resolve this, we examine how denoising autoencoding (DAE) and backtranslation (BT) impact MMT under different data conditions and model scales. Unlike prior studies, we use a realistic dataset of 100 directions and consider many domain combinations of monolingual and test data. We find that monolingual data generally helps MMT, but models are surprisingly brittle to domain mismatches, especially at smaller model scales. BT is beneficial when the parallel, monolingual, and test data sources are similar but can be detrimental otherwise, while DAE is less effective than previously reported. Next, we analyze the impact of scale (from 90M to 1.6B parameters) and find it is important for both methods, particularly DAE. As scale increases, DAE transitions from underperforming the parallel-only baseline at 90M to converging with BT performance at 1.6B, and even surpassing it in low-resource. These results offer new insights into how to best use monolingual data in MMT.

相關內容

去噪自(zi)編碼器(qi)背后的思想(xiang)很簡單. 為了(le)迫使隱(yin)藏層單元發現更多魯棒性好的特征(zheng), 以及阻止它學(xue)習恒(heng)等函數, 我(wo)們(men)拿受損的輸入(ru)來訓練自(zi)編碼器(qi)重構(gou)輸入(ru)。

Deep neural networks (DNNs) may suffer from significantly degenerated performance when the training and test data are of different underlying distributions. Despite the importance of model generalization to out-of-distribution (OOD) data, the accuracy of state-of-the-art (SOTA) models on OOD data can plummet. Recent work has demonstrated that regular or off-manifold adversarial examples, as a special case of data augmentation, can be used to improve OOD generalization. Inspired by this, we theoretically prove that on-manifold adversarial examples can better benefit OOD generalization. Nevertheless, it is nontrivial to generate on-manifold adversarial examples because the real manifold is generally complex. To address this issue, we proposed a novel method of Augmenting data with Adversarial examples via a Wavelet module (AdvWavAug), an on-manifold adversarial data augmentation technique that is simple to implement. In particular, we project a benign image into a wavelet domain. With the assistance of the sparsity characteristic of wavelet transformation, we can modify an image on the estimated data manifold. We conduct adversarial augmentation based on AdvProp training framework. Extensive experiments on different models and different datasets, including ImageNet and its distorted versions, demonstrate that our method can improve model generalization, especially on OOD data. By integrating AdvWavAug into the training process, we have achieved SOTA results on some recent transformer-based models.

Speech-to-speech translation systems today do not adequately support use for dialog purposes. In particular, nuances of speaker intent and stance can be lost due to improper prosody transfer. We present an exploration of what needs to be done to overcome this. First, we developed a data collection protocol in which bilingual speakers re-enact utterances from an earlier conversation in their other language, and used this to collect an English-Spanish corpus, so far comprising 1871 matched utterance pairs. Second, we developed a simple prosodic dissimilarity metric based on Euclidean distance over a broad set of prosodic features. We then used these to investigate cross-language prosodic differences, measure the likely utility of three simple baseline models, and identify phenomena which will require more powerful modeling. Our findings should inform future research on cross-language prosody and the design of speech-to-speech translation systems capable of effective prosody transfer.

Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.

Large language models (LLMs) have significantly advanced the field of natural language processing, with GPT models at the forefront. While their remarkable performance spans a range of tasks, adapting LLMs for real-world business scenarios still poses challenges warranting further investigation. This paper presents an empirical analysis aimed at bridging the gap in adapting LLMs to practical use cases. To do that, we select the question answering (QA) task of insurance as a case study due to its challenge of reasoning. Based on the task we design a new model relied on LLMs which are empowered by additional knowledge extracted from insurance policy rulebooks and DBpedia. The additional knowledge helps LLMs to understand new concepts of insurance for domain adaptation. Preliminary results on two QA datasets show that knowledge enhancement significantly improves the reasoning ability of GPT-3.5 (55.80% and 57.83% in terms of accuracy). The analysis also indicates that existing public knowledge bases, e.g., DBPedia is beneficial for knowledge enhancement. Our findings reveal that the inherent complexity of business scenarios often necessitates the incorporation of domain-specific knowledge and external resources for effective problem-solving.

Large language models (LLMs) demonstrate promising translation performance among various natural languages. However, many LLMs especially the open-sourced ones, such as BLOOM and LLaMA, are English-dominant and support only dozens of natural languages, making the potential of LLMs on language translation less explored. In this work, we present BigTranslate which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languages. BigTranslate is built upon LLaMA-13B and it is optimized in three steps. First, we continue training LLaMA with massive Chinese monolingual data. Second, we continue training the model with a large-scale parallel dataset that covers 102 natural languages. Third, we instruct-tune the foundation model with multilingual translation instructions, leading to our BigTranslate model. The preliminary experiments on multilingual translation show that BigTranslate performs comparably with ChatGPT and Google Translate in many languages and even outperforms ChatGPT in 8 language pairs. We release the BigTranslate model and hope it can advance the research progress.

With the increasing influence of social media platforms, it has become crucial to develop automated systems capable of detecting instances of sexism and other disrespectful and hateful behaviors to promote a more inclusive and respectful online environment. Nevertheless, these tasks are considerably challenging considering different hate categories and the author's intentions, especially under the learning with disagreements regime. This paper describes AI-UPV team's participation in the EXIST (sEXism Identification in Social neTworks) Lab at CLEF 2023. The proposed approach aims at addressing the task of sexism identification and characterization under the learning with disagreements paradigm by training directly from the data with disagreements, without using any aggregated label. Yet, performances considering both soft and hard evaluations are reported. The proposed system uses large language models (i.e., mBERT and XLM-RoBERTa) and ensemble strategies for sexism identification and classification in English and Spanish. In particular, our system is articulated in three different pipelines. The ensemble approach outperformed the individual large language models obtaining the best performances both adopting a soft and a hard label evaluation. This work describes the participation in all the three EXIST tasks, considering a soft evaluation, it obtained fourth place in Task 2 at EXIST and first place in Task 3, with the highest ICM-Soft of -2.32 and a normalized ICM-Soft of 0.79. The source code of our approaches is publicly available at //github.com/AngelFelipeMP/Sexism-LLM-Learning-With-Disagreement.

Annotating medical imaging datasets is costly, so fine-tuning (or transfer learning) is the most effective method for digital pathology vision applications such as disease classification and semantic segmentation. However, due to texture bias in models trained on real-world images, transfer learning for histopathology applications might result in underperforming models, which necessitates the need for using unlabeled histopathology data and self-supervised methods to discover domain-specific characteristics. Here, we tested the premise that histopathology-specific pretrained models provide better initializations for pathology vision tasks, i.e., gland and cell segmentation. In this study, we compare the performance of gland and cell segmentation tasks with domain-specific and non-domain-specific pretrained weights. Moreover, we investigate the data size at which domain-specific pretraining produces a statistically significant difference in performance. In addition, we investigated whether domain-specific initialization improves the effectiveness of out-of-domain testing on distinct datasets but the same task. The results indicate that performance gain using domain-specific pretraining depends on both the task and the size of the training dataset. In instances with limited dataset sizes, a significant improvement in gland segmentation performance was also observed, whereas models trained on cell segmentation datasets exhibit no improvement.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司