亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

V. Levenshtein first proposed the sequence reconstruction problem in 2001. This problem studies the model where the same sequence from some set is transmitted over multiple channels, and the decoder receives the different outputs. Assume that the transmitted sequence is at distance $d$ from some code and there are at most $r$ errors in every channel. Then the sequence reconstruction problem is to find the minimum number of channels required to recover exactly the transmitted sequence that has to be greater than the maximum intersection between two metric balls of radius $r$, where the distance between their centers is at least $d$. In this paper, we study the sequence reconstruction problem of permutations under the Hamming distance. In this model, we define a Cayley graph and find the exact value of the largest intersection of two metric balls in this graph under the Hamming distance for $r=4$ with $d\geqslant 5$, and for $d=2r$.

相關內容

Incorporating computed tomography (CT) reconstruction operators into differentiable pipelines has proven beneficial in many applications. Such approaches usually focus on the projection data and keep the acquisition geometry fixed. However, precise knowledge of the acquisition geometry is essential for high quality reconstruction results. In this paper, the differentiable formulation of fan-beam CT reconstruction is extended to the acquisition geometry. This allows to propagate gradient information from a loss function on the reconstructed image into the geometry parameters. As a proof-of-concept experiment, this idea is applied to rigid motion compensation. The cost function is parameterized by a trained neural network which regresses an image quality metric from the motion affected reconstruction alone. Using the proposed method, we are the first to optimize such an autofocus-inspired algorithm based on analytical gradients. The algorithm achieves a reduction in MSE by 35.5 % and an improvement in SSIM by 12.6 % over the motion affected reconstruction. Next to motion compensation, we see further use cases of our differentiable method for scanner calibration or hybrid techniques employing deep models.

We study the classical metric $k$-median clustering problem over a set of input rankings (i.e., permutations), which has myriad applications, from social-choice theory to web search and databases. A folklore algorithm provides a $2$-approximate solution in polynomial time for all $k=O(1)$, and works irrespective of the underlying distance measure, so long it is a metric; however, going below the $2$-factor is a notorious challenge. We consider the Ulam distance, a variant of the well-known edit-distance metric, where strings are restricted to be permutations. For this metric, Chakraborty, Das, and Krauthgamer [SODA, 2021] provided a $(2-\delta)$-approximation algorithm for $k=1$, where $\delta\approx 2^{-40}$. Our primary contribution is a new algorithmic framework for clustering a set of permutations. Our first result is a $1.999$-approximation algorithm for the metric $k$-median problem under the Ulam metric, that runs in time $(k \log (nd))^{O(k)}n d^3$ for an input consisting of $n$ permutations over $[d]$. In fact, our framework is powerful enough to extend this result to the streaming model (where the $n$ input permutations arrive one by one) using only polylogarithmic (in $n$) space. Additionally, we show that similar results can be obtained even in the presence of outliers, which is presumably a more difficult problem.

Let $D$ be an oriented graph. The inversion of a set $X$ of vertices in $D$ consists in reversing the direction of all arcs with both ends in $X$. The inversion number of $D$, denoted by ${\rm inv}(D)$, is the minimum number of inversions needed to make $D$ acyclic. Denoting by $\tau(D)$, $\tau' (D)$, and $\nu(D)$ the cycle transversal number, the cycle arc-transversal number and the cycle packing number of $D$ respectively, one shows that ${\rm inv}(D) \leq \tau' (D)$, ${\rm inv}(D) \leq 2\tau(D)$ and there exists a function $g$ such that ${\rm inv}(D)\leq g(\nu(D))$. We conjecture that for any two oriented graphs $L$ and $R$, ${\rm inv}(L\rightarrow R) ={\rm inv}(L) +{\rm inv}(R)$ where $L\rightarrow R$ is the dijoin of $L$ and $R$. This would imply that the first two inequalities are tight. We prove this conjecture when ${\rm inv}(L)\leq 1$ and ${\rm inv}(R)\leq 2$ and when ${\rm inv}(L) ={\rm inv}(R)=2$ and $L$ and $R$ are strongly connected. We also show that the function $g$ of the third inequality satisfies $g(1)\leq 4$. We then consider the complexity of deciding whether ${\rm inv}(D)\leq k$ for a given oriented graph $D$. We show that it is NP-complete for $k=1$, which together with the above conjecture would imply that it is NP-complete for every $k$. This contrasts with a result of Belkhechine et al. which states that deciding whether ${\rm inv}(T)\leq k$ for a given tournament $T$ is polynomial-time solvable.

Metrics for merge trees that are simultaneously stable, informative, and efficiently computable have so far eluded researchers. We show in this work that it is possible to devise such a metric when restricting merge trees to ordered domains such as the interval and the circle. We present the ``dynamic ordered persistence editing'' (DOPE) distance, which we prove is stable and informative while satisfying metric properties. We then devise a simple $O(N^2)$ dynamic programming algorithm to compute it on the interval and an $O(N^3)$ algorithm to compute it on the circle. Surprisingly, we accomplish this by ignoring all of the hierarchical information of the merge tree and simply focusing on a sequence of ordered critical points, which can be interpreted as a time series. Thus our algorithm is more similar to string edit distance and dynamic time warping than it is to more conventional merge tree comparison algorithms. In the context of time series with the interval as a domain, we show empirically on the UCR time series classification dataset that DOPE performs better than bottleneck/Wasserstein distances between persistence diagrams.

Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.

Consider the semigroup of random walk on a complete graph, which we call the Potts semigroup. Diaconis and Saloff-Coste computed the maximum of the ratio of the relative entropy and the Dirichlet form obtaining the constant $\alpha_2$ in the $2$-log-Sobolev inequality ($2$-LSI). In this paper, we obtain the best possible non-linear inequality relating entropy and the Dirichlet form (i.e., $p$-NLSI, $p\ge1$). As an example, we show $\alpha_1 = 1+\frac{1+o(1)}{\log k}$. By integrating the $1$-NLSI we obtain the new strong data processing inequality (SDPI), which in turn allows us to improve results of Mossel and Peres on reconstruction thresholds for Potts models on trees. A special case is the problem of reconstructing color of the root of a $k$-colored tree given knowledge of colors of all the leaves. We show that to have a non-trivial reconstruction probability the branching number of the tree should be at least $$\frac{\log k}{\log k - \log(k-1)} = (1-o(1))k\log k.$$ This recovers previous results (of Sly and Bhatnagar et al.) in (slightly) more generality, but more importantly avoids the need for any coloring-specialized arguments. Similarly, we improve the state-of-the-art on the weak recovery threshold for the stochastic block model with $k$ balanced groups, for all $k\ge 3$. To further show the power of our method, we prove optimal non-reconstruction results for a broadcasting on trees model with Gaussian kernels, closing a gap left open by Eldan et al. These improvements advocate information-theoretic methods as a useful complement to the conventional techniques originating from the statistical physics.

Given a possibly false claim sentence, how can we automatically correct it with minimal editing? Existing methods either require a large number of pairs of false and corrected claims for supervised training or do not handle well errors spanning over multiple tokens within an utterance. In this paper, we propose VENCE, a novel method for factual error correction (FEC) with minimal edits. VENCE formulates the FEC problem as iterative sampling editing actions with respect to a target density function. We carefully design the target function with predicted truthfulness scores from an offline trained fact verification model. VENCE samples the most probable editing positions based on back-calculated gradients of the truthfulness score concerning input tokens and the editing actions using a distantly-supervised language model (T5). Experiments on a public dataset show that VENCE improves the well-adopted SARI metric by 5.3 (or a relative improvement of 11.8%) over the previous best distantly-supervised methods.

This paper presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework [87] to the Wasserstein metric space of merge trees [92]. We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of orthogonal geodesic axes, while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-memory parallelism, as well as an analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach also trivially extends to extremum persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our approach - with MT-PGA computations in the orders of minutes for the largest examples. We show the utility of our contributions by extending to merge trees two typical PCA applications. First, we apply MT-PGA to data reduction and reliably compress merge trees by concisely representing them by their first coordinates in the MT-PGA basis. Second, we present a dimensionality reduction framework exploiting the first two directions of the MT-PGA basis to generate two-dimensional layouts of the ensemble. We augment these layouts with persistence correlation views, enabling global and local visual inspections of the feature variability in the ensemble. In both applications, quantitative experiments assess the relevance of our framework. Finally, we provide a C++ implementation that can be used to reproduce our results.

Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.

Many scientific problems require identifying a small set of covariates that are associated with a target response and estimating their effects. Often, these effects are nonlinear and include interactions, so linear and additive methods can lead to poor estimation and variable selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and interactions are computationally intractable -- with runtime at least quadratic in the number of covariates, and often worse. In the present work, we solve this computational bottleneck. We show that suitable interaction models have a kernel representation, namely there exists a "kernel trick" to perform variable selection and estimation in $O$(# covariates) time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects represent all variation that cannot be explained by lower-order effects. On a variety of synthetic and real data sets, our approach outperforms existing methods used for large, high-dimensional data sets while remaining competitive (or being orders of magnitude faster) in runtime.

北京阿比特科技有限公司