We consider finite element methods of multiscale type to approximate solutions for two-dimensional symmetric elliptic partial differential equations with heterogeneous $L^\infty$ coefficients. The methods are of Galerkin type and follow the Variational Multiscale and Localized Orthogonal Decomposition--LOD approaches in the sense that it decouples spaces into \emph{multiscale} and \emph{fine} subspaces. In a first method, the multiscale basis functions are obtained by mapping coarse basis functions, based on corners used on primal iterative substructuring methods, to functions of global minimal energy. This approach delivers quasi-optimal a priori error energy approximation with respect to the mesh size, but it is not robust with respect to high-contrast coefficients. In a second method, edge modes based on local generalized eigenvalue problems are added to the corner modes. As a result, optimal a priori error energy estimate is achieved which is mesh and contrast independent. The methods converge at optimal rate even if the solution has minimum regularity, belonging only to the Sobolev space $H^1$.
Hash algorithms are fundamental tools in cryptography, offering irreversible and sensitive transformations of input data for various security purposes. As computing architectures evolve towards heterogeneous systems, efficiently harnessing diverse computing resources for hash encryption algorithms becomes crucial. This paper presents HETOCompiler, a novel cryptography compilation framework designed for heterogeneous systems. Leveraging Multi-Level Intermediate Representation (MLIR), HETOCompiler abstracts syntax and semantics for cryptographic primitives and heterogeneous computing models, facilitating efficient compilation of high-level hash encryption algorithms into executable programs compatible with diverse devices. Experimental results demonstrate significant performance improvements over existing OpenSSL library, with average enhancements of 49.3x, 1.5x, and 23.4x for SHA-1, MD5, and SM3 algorithms respectively.
We introduce a practical sign-dependent sequence selection metric for probabilistic amplitude shaping and propose a simple method to predict the gains in signal-to-noise ratio (SNR) for sequence selection. The proposed metric provides a $0.5$ dB SNR gain for single-polarized 256-QAM transmission over a long-haul fiber link.
Recent surge in large-scale generative models has spurred the development of vast fields in computer vision. In particular, text-to-image diffusion models have garnered widespread adoption across diverse domain due to their potential for high-fidelity image generation. Nonetheless, existing large-scale diffusion models are confined to generate images of up to 1K resolution, which is far from meeting the demands of contemporary commercial applications. Directly sampling higher-resolution images often yields results marred by artifacts such as object repetition and distorted shapes. Addressing the aforementioned issues typically necessitates training or fine-tuning models on higher resolution datasets. However, this undertaking poses a formidable challenge due to the difficulty in collecting large-scale high-resolution contents and substantial computational resources. While several preceding works have proposed alternatives, they often fail to produce convincing results. In this work, we probe the generative ability of diffusion models at higher resolution beyond its original capability and propose a novel progressive approach that fully utilizes generated low-resolution image to guide the generation of higher resolution image. Our method obviates the need for additional training or fine-tuning which significantly lowers the burden of computational costs. Extensive experiments and results validate the efficiency and efficacy of our method. Project page: //yhyun225.github.io/DiffuseHigh/
We propose a new framework that automatically generates high-quality segmentation masks with their referring expressions as pseudo supervisions for referring image segmentation (RIS). These pseudo supervisions allow the training of any supervised RIS methods without the cost of manual labeling. To achieve this, we incorporate existing segmentation and image captioning foundation models, leveraging their broad generalization capabilities. However, the naive incorporation of these models may generate non-distinctive expressions that do not distinctively refer to the target masks. To address this challenge, we propose two-fold strategies that generate distinctive captions: 1) 'distinctive caption sampling', a new decoding method for the captioning model, to generate multiple expression candidates with detailed words focusing on the target. 2) 'distinctiveness-based text filtering' to further validate the candidates and filter out those with a low level of distinctiveness. These two strategies ensure that the generated text supervisions can distinguish the target from other objects, making them appropriate for the RIS annotations. Our method significantly outperforms both weakly and zero-shot SoTA methods on the RIS benchmark datasets. It also surpasses fully supervised methods in unseen domains, proving its capability to tackle the open-world challenge within RIS. Furthermore, integrating our method with human annotations yields further improvements, highlighting its potential in semi-supervised learning applications.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $\sim$ 12% under supervised settings and 7% $\sim$ 13% under semi-supervised settings.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.