亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In today's digital landscape, journalists urgently require tools to verify the authenticity of facial images and videos depicting specific public figures before incorporating them into news stories. Existing deepfake detectors are not optimized for this detection task when an image is associated with a specific and identifiable individual. This study focuses on the deepfake detection of facial images of individual public figures. We propose to condition the proposed detector on the identity of the identified individual given the advantages revealed by our theory-driven simulations. While most detectors in the literature rely on perceptible or imperceptible artifacts present in deepfake facial images, we demonstrate that the detection performance can be improved by exploiting the idempotency property of neural networks. In our approach, the training process involves double neural-network operations where we pass an authentic image through a deepfake simulating network twice. Experimental results show that the proposed method improves the area under the curve (AUC) from 0.92 to 0.94 and reduces its standard deviation by 17\%. For evaluating the detection performance of individual public figures, a facial image dataset with individuals' names is required, a criterion not met by the current deepfake datasets. To address this, we curated a dataset comprising 32k images featuring 45 public figures, which we intend to release to the public after the paper is published.

相關內容

Volumetric videos, benefiting from immersive 3D realism and interactivity, hold vast potential for various applications, while the tremendous data volume poses significant challenges for compression. Recently, NeRF has demonstrated remarkable potential in volumetric video compression thanks to its simple representation and powerful 3D modeling capabilities, where a notable work is ReRF. However, ReRF separates the modeling from compression process, resulting in suboptimal compression efficiency. In contrast, in this paper, we propose a volumetric video compression method based on dynamic NeRF in a more compact manner. Specifically, we decompose the NeRF representation into the coefficient fields and the basis fields, incrementally updating the basis fields in the temporal domain to achieve dynamic modeling. Additionally, we perform end-to-end joint optimization on the modeling and compression process to further improve the compression efficiency. Extensive experiments demonstrate that our method achieves higher compression efficiency compared to ReRF on various datasets.

Tabular data pervades the landscape of the World Wide Web, playing a foundational role in the digital architecture that underpins online information. Given the recent influence of large-scale pretrained models like ChatGPT and SAM across various domains, exploring the application of pretraining techniques for mining tabular data on the web has emerged as a highly promising research direction. Indeed, there have been some recent works around this topic where most (if not all) of them are limited in the scope of a fixed-schema/single table. Due to the scale of the dataset and the parameter size of the prior models, we believe that we have not reached the ''BERT moment'' for the ubiquitous tabular data. The development on this line significantly lags behind the counterpart research domains such as natural language processing. In this work, we first identify the crucial challenges behind tabular data pretraining, particularly overcoming the cross-table hurdle. As a pioneering endeavor, this work mainly (i)-contributes a high-quality real-world tabular dataset, (ii)-proposes an innovative, generic, and efficient cross-table pretraining framework, dubbed as CM2, where the core to it comprises a semantic-aware tabular neural network that uniformly encodes heterogeneous tables without much restriction and (iii)-introduces a novel pretraining objective -- prompt Masked Table Modeling (pMTM) -- inspired by NLP but intricately tailored to scalable pretraining on tables. Our extensive experiments demonstrate CM2's state-of-the-art performance and validate that cross-table pretraining can enhance various downstream tasks.

In recent years, weakly supervised semantic segmentation using image-level labels as supervision has received significant attention in the field of computer vision. Most existing methods have addressed the challenges arising from the lack of spatial information in these labels by focusing on facilitating supervised learning through the generation of pseudo-labels from class activation maps (CAMs). Due to the localized pattern detection of Convolutional Neural Networks (CNNs), CAMs often emphasize only the most discriminative parts of an object, making it challenging to accurately distinguish foreground objects from each other and the background. Recent studies have shown that Vision Transformer (ViT) features, due to their global view, are more effective in capturing the scene layout than CNNs. However, the use of hierarchical ViTs has not been extensively explored in this field. This work explores the use of Swin Transformer by proposing "SWTformer" to enhance the accuracy of the initial seed CAMs by bringing local and global views together. SWTformer-V1 generates class probabilities and CAMs using only the patch tokens as features. SWTformer-V2 incorporates a multi-scale feature fusion mechanism to extract additional information and utilizes a background-aware mechanism to generate more accurate localization maps with improved cross-object discrimination. Based on experiments on the PascalVOC 2012 dataset, SWTformer-V1 achieves a 0.98% mAP higher localization accuracy, outperforming state-of-the-art models. It also yields comparable performance by 0.82% mIoU on average higher than other methods in generating initial localization maps, depending only on the classification network. SWTformer-V2 further improves the accuracy of the generated seed CAMs by 5.32% mIoU, further proving the effectiveness of the local-to-global view provided by the Swin transformer.

Face Recognition (FR) systems can suffer from physical (i.e., print photo) and digital (i.e., DeepFake) attacks. However, previous related work rarely considers both situations at the same time. This implies the deployment of multiple models and thus more computational burden. The main reasons for this lack of an integrated model are caused by two factors: (1) The lack of a dataset including both physical and digital attacks with ID consistency which means the same ID covers the real face and all attack types; (2) Given the large intra-class variance between these two attacks, it is difficult to learn a compact feature space to detect both attacks simultaneously. To address these issues, we collect a Unified physical-digital Attack dataset, called UniAttackData. The dataset consists of $1,800$ participations of 2 and 12 physical and digital attacks, respectively, resulting in a total of 29,706 videos. Then, we propose a Unified Attack Detection framework based on Vision-Language Models (VLMs), namely UniAttackDetection, which includes three main modules: the Teacher-Student Prompts (TSP) module, focused on acquiring unified and specific knowledge respectively; the Unified Knowledge Mining (UKM) module, designed to capture a comprehensive feature space; and the Sample-Level Prompt Interaction (SLPI) module, aimed at grasping sample-level semantics. These three modules seamlessly form a robust unified attack detection framework. Extensive experiments on UniAttackData and three other datasets demonstrate the superiority of our approach for unified face attack detection.

With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. With Large Language Models (LLMs) showcasing remarkable capabilities in key language tasks, this survey provides a detailed overview of the recent advancements in video understanding harnessing the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended spatial-temporal reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into four main types: LLM-based Video Agents, Vid-LLMs Pretraining, Vid-LLMs Instruction Tuning, and Hybrid Methods. Furthermore, this survey also presents a comprehensive study of the tasks and datasets for Vid-LLMs, along with the methodologies employed for evaluation. Additionally, the survey explores the expansive applications of Vid-LLMs across various domains, thereby showcasing their remarkable scalability and versatility in addressing challenges in real-world video understanding. Finally, the survey summarizes the limitations of existing Vid-LLMs and the directions for future research. For more information, we recommend readers visit the repository at //github.com/yunlong10/Awesome-LLMs-for-Video-Understanding.

In the rapidly evolving landscape of artificial intelligence (AI), generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data. However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency, particularly in scenarios demanding low latency and high throughput. This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective, standing at the crux of advanced AI innovations and practical system optimizations. We provide in-depth analysis, covering a spectrum of solutions, ranging from cutting-edge algorithmic modifications to groundbreaking changes in system designs. The survey aims to provide a comprehensive understanding of the current state and future directions in efficient LLM serving, offering valuable insights for researchers and practitioners in overcoming the barriers of effective LLM deployment, thereby reshaping the future of AI.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

北京阿比特科技有限公司