亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As generative AI becomes more prevalent, it is important to study how human users interact with such models. In this work, we investigate how people use text-to-image models to generate desired target images. To study this interaction, we created ArtWhisperer, an online game where users are given a target image and are tasked with iteratively finding a prompt that creates a similar-looking image as the target. Through this game, we recorded over 50,000 human-AI interactions; each interaction corresponds to one text prompt created by a user and the corresponding generated image. The majority of these are repeated interactions where a user iterates to find the best prompt for their target image, making this a unique sequential dataset for studying human-AI collaborations. In an initial analysis of this dataset, we identify several characteristics of prompt interactions and user strategies. People submit diverse prompts and are able to discover a variety of text descriptions that generate similar images. Interestingly, prompt diversity does not decrease as users find better prompts. We further propose to a new metric the study the steerability of AI using our dataset. We define steerability as the expected number of interactions required to adequately complete a task. We estimate this value by fitting a Markov chain for each target task and calculating the expected time to reach an adequate score in the Markov chain. We quantify and compare AI steerability across different types of target images and two different models, finding that images of cities and natural world images are more steerable than artistic and fantasy images. These findings provide insights into human-AI interaction behavior, present a concrete method of assessing AI steerability, and demonstrate the general utility of the ArtWhisperer dataset.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 強化學習 · Rainbow · INFORMS · Performer ·
2023 年 8 月 8 日

This paper introduces BarlowRL, a data-efficient reinforcement learning agent that combines the Barlow Twins self-supervised learning framework with DER (Data-Efficient Rainbow) algorithm. BarlowRL outperforms both DER and its contrastive counterpart CURL on the Atari 100k benchmark. BarlowRL avoids dimensional collapse by enforcing information spread to the whole space. This helps RL algorithms to utilize uniformly spread state representation that eventually results in a remarkable performance. The integration of Barlow Twins with DER enhances data efficiency and achieves superior performance in the RL tasks. BarlowRL demonstrates the potential of incorporating self-supervised learning techniques to improve RL algorithms.

In this work we introduce CUTS (Contrastive and Unsupervised Training for Segmentation), a fully unsupervised deep learning framework for medical image segmentation to better utilize the vast majority of imaging data that is not labeled or annotated. We utilize self-supervision from pixels and their local neighborhoods in the images themselves. Our unsupervised approach optimizes a training objective that leverages concepts from contrastive learning and autoencoding. Our framework segments medical images with a novel two-stage approach without relying on any labeled data at any stage. The first stage involves the creation of a "pixel-centered patch" that embeds every pixel along with its surrounding patch, using a vector representation in a high-dimensional latent embedding space. The second stage utilizes diffusion condensation, a multi-scale topological data analysis approach, to dynamically coarse-grain these embedding vectors at all levels of granularity. The final outcome is a series of coarse-to-fine segmentations that highlight image structures at various scales. In this work, we show successful multi-scale segmentation on natural images, retinal fundus images, and brain MRI images. Our framework delineates structures and patterns at different scales which, in the cases of medical images, may carry distinct information relevant to clinical interpretation. Quantitatively, our framework demonstrates improvements ranging from 10% to 200% on dice coefficient and Hausdorff distance compared to existing unsupervised methods across three medical image datasets. As we tackle the problem of segmenting medical images at multiple meaningful granularities without relying on any label, we hope to demonstrate the possibility to circumvent tedious and repetitive manual annotations in future practice.

To facilitate the research on intelligent and human-like chatbots with multi-modal context, we introduce a new video-based multi-modal dialogue dataset, called TikTalk. We collect 38K videos from a popular video-sharing platform, along with 367K conversations posted by users beneath them. Users engage in spontaneous conversations based on their multi-modal experiences from watching videos, which helps recreate real-world chitchat context. Compared to previous multi-modal dialogue datasets, the richer context types in TikTalk lead to more diverse conversations, but also increase the difficulty in capturing human interests from intricate multi-modal information to generate personalized responses. Moreover, external knowledge is more frequently evoked in our dataset. These facts reveal new challenges for multi-modal dialogue models. We quantitatively demonstrate the characteristics of TikTalk, propose a video-based multi-modal chitchat task, and evaluate several dialogue baselines. Experimental results indicate that the models incorporating large language models (LLM) can generate more diverse responses, while the model utilizing knowledge graphs to introduce external knowledge performs the best overall. Furthermore, no existing model can solve all the above challenges well. There is still a large room for future improvements, even for LLM with visual extensions. Our dataset is available at \url{//ruc-aimind.github.io/projects/TikTalk/}.

In this work, we present SciGraphQA, a synthetic multi-turn question-answer dataset related to academic graphs. SciGraphQA is 13 times larger than ChartVQA, the previously largest chart-visual question-answering dataset. It is also the largest open-sourced chart VQA dataset with non-synthetic charts. To build our dataset, we selected 290,000 Computer Science or Machine Learning ArXiv papers published between 2010 and 2020, and then used Palm-2 to generate 295K samples of open-vocabulary multi-turn question-answering dialogues about the graphs. As context, we provided the text-only Palm-2 with paper title, abstract, paragraph mentioning the graph, and rich text contextual data from the graph itself, obtaining dialogues with an average 2.23 question-answer turns for each graph. We asked GPT-4 to assess the matching quality of our question-answer turns given the paper's context, obtaining an average rating of 8.7/10 on our 3K test set. We evaluated the 0-shot capability of the most popular MLLM models such as LLaVa, mPLUGowl, BLIP-2, and openFlamingo's on our dataset, finding LLaVA-13B being the most performant with a CIDEr score of 0.08. We further enriched the question prompts for LLAVA by including the serialized data tables extracted from the graphs using the DePlot model, boosting LLaVA's 0-shot CIDEr to 0.15. To verify the validity of our dataset, we also fine-tuned LLaVa using our dataset, reaching a substantially higher CIDEr score of 0.26. We anticipate further accuracy improvement by including segmentation mask tokens and leveraging larger LLM backbones coupled with emergent prompting techniques. Our code and data are open-sourced.

In this work, we first formulate the problem of robotic water scooping using goal-conditioned reinforcement learning. This task is particularly challenging due to the complex dynamics of fluid and the need to achieve multi-modal goals. The policy is required to successfully reach both position goals and water amount goals, which leads to a large convoluted goal state space. To overcome these challenges, we introduce Goal Sampling Adaptation for Scooping (GOATS), a curriculum reinforcement learning method that can learn an effective and generalizable policy for robot scooping tasks. Specifically, we use a goal-factorized reward formulation and interpolate position goal distributions and amount goal distributions to create curriculum throughout the learning process. As a result, our proposed method can outperform the baselines in simulation and achieves 5.46% and 8.71% amount errors on bowl scooping and bucket scooping tasks, respectively, under 1000 variations of initial water states in the tank and a large goal state space. Besides being effective in simulation environments, our method can efficiently adapt to noisy real-robot water-scooping scenarios with diverse physical configurations and unseen settings, demonstrating superior efficacy and generalizability. The videos of this work are available on our project page: //sites.google.com/view/goatscooping.

In this work, we study the problem of finding the maximum value of a non-negative submodular function subject to a limit on the number of items selected, a ubiquitous problem that appears in many applications, such as data summarization and nonlinear regression. We provide the first deterministic, linear-time approximation algorithms for this problem that do not assume the objective is monotone. We present three deterministic, linear-time algorithms: a single-pass streaming algorithm with a ratio of $23.313 + \epsilon$, which is the first linear-time streaming algorithm; a simpler deterministic linear-time algorithm with a ratio of $11.657$; and a $(4 + O(\epsilon ))$-approximation algorithm. Finally, we present a deterministic algorithm that obtains ratio of $e + \epsilon$ in $O_{\epsilon}(n \log(n))$ time, close to the best known expected ratio of $e - 0.121$ in polynomial time.

Purpose: In this work, we present a workflow to construct generic and robust generative image priors from magnitude-only images. The priors can then be used for regularization in reconstruction to improve image quality. Methods: The workflow begins with the preparation of training datasets from magnitude-only MR images. This dataset is then augmented with phase information and used to train generative priors of complex images. Finally, trained priors are evaluated using both linear and nonlinear reconstruction for compressed sensing parallel imaging with various undersampling schemes. Results: The results of our experiments demonstrate that priors trained on complex images outperform priors trained only on magnitude images. Additionally, a prior trained on a larger dataset exhibits higher robustness. Finally, we show that the generative priors are superior to L1 -wavelet regularization for compressed sensing parallel imaging with high undersampling. Conclusion: These findings stress the importance of incorporating phase information and leveraging large datasets to raise the performance and reliability of the generative priors for MRI reconstruction. Phase augmentation makes it possible to use existing image databases for training.

Laypeople (i.e. individuals without legal training) may often have trouble resolving their legal problems. In this work, we present the JusticeBot methodology. This methodology can be used to build legal decision support tools, that support laypeople in exploring their legal rights in certain situations, using a hybrid case-based and rule-based reasoning approach. The system ask the user questions regarding their situation and provides them with legal information, references to previous similar cases and possible next steps. This information could potentially help the user resolve their issue, e.g. by settling their case or enforcing their rights in court. We present the methodology for building such tools, which consists of discovering typically applied legal rules from legislation and case law, and encoding previous cases to support the user. We also present an interface to build tools using this methodology and a case study of the first deployed JusticeBot version, focused on landlord-tenant disputes, which has been used by thousands of individuals.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司