亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantitative analysis of probabilistic programs aims at deriving tight numerical bounds for probabilistic properties such as expectation and assertion probability, and plays a crucial role in the verification of probabilistic programs. Along this line of research, most existing works consider numerical bounds over the whole state space monolithically and do not consider piecewise bounds. Clearly, monolithic bounds are either conservative, or not expressive and succinct enough in general. To derive more succinct, expressive and precise numerical bounds for probabilistic properties, we propose a novel approach for synthesizing piecewise linear bounds in this work. To this end, we first show how to extract a piecewise feature w.r.t. a given quantitative property from a probabilistic program using latticed $k$-induction that captures a wide and representative class of piecewise bound functions. Second, we develop an algorithmic approach to synthesize piecewise linear upper and lower bounds from the piecewise feature, for which we show that the synthesis of piecewise linear bounds can be reduced to bilinear programming. Third, we implement our approach with the bilinear programming solver Gurobi. The experimental results indicate that our approach is capable of generating tight or even accurate piecewise linear bounds for an extensive set of benchmarks compared with the state of the art.

相關內容

We present a new class of preconditioned iterative methods for solving linear systems of the form $Ax = b$. Our methods are based on constructing a low-rank Nystr\"om approximation to $A$ using sparse random sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of $A$, which improves as the rank of the Nystr\"om approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any $n\times n$ linear system that is well-conditioned except for $k$ outlying large singular values in $\tilde{O}(n^{2.065} + k^\omega)$ time, improving on a recent result of [Derezi\'nski, Yang, STOC 2024] for all $k \gtrsim n^{0.78}$. 2. We give the first $\tilde{O}(n^2 + {d_\lambda}^{\omega}$) time algorithm for solving a regularized linear system $(A + \lambda I)x = b$, where $A$ is positive semidefinite with effective dimension $d_\lambda$. This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten $p$-norms and other matrix norms. For example, for the Schatten 1 (nuclear) norm, we give an algorithm that runs in $\tilde{O}(n^{2.11})$ time, improving on an $\tilde{O}(n^{2.18})$ method of [Musco et al., ITCS 2018]. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching.

Retrieval augmentation is critical when Language Models (LMs) exploit non-parametric knowledge related to the query through external knowledge bases before reasoning. The retrieved information is incorporated into LMs as context alongside the query, enhancing the reliability of responses towards factual questions. Prior researches in retrieval augmentation typically follow a retriever-generator paradigm. In this context, traditional retrievers encounter challenges in precisely and seamlessly extracting query-relevant information from knowledge bases. To address this issue, this paper introduces a novel retrieval augmentation framework called ChatLR that primarily employs the powerful semantic understanding ability of Large Language Models (LLMs) as retrievers to achieve precise and concise information retrieval. Additionally, we construct an LLM-based search and question answering system tailored for the financial domain by fine-tuning LLM on two tasks including Text2API and API-ID recognition. Experimental results demonstrate the effectiveness of ChatLR in addressing user queries, achieving an overall information retrieval accuracy exceeding 98.8\%.

This work studies sparse adversarial perturbations bounded by $l_0$ norm. We propose a white-box PGD-like attack method named sparse-PGD to effectively and efficiently generate such perturbations. Furthermore, we combine sparse-PGD with a black-box attack to comprehensively and more reliably evaluate the models' robustness against $l_0$ bounded adversarial perturbations. Moreover, the efficiency of sparse-PGD enables us to conduct adversarial training to build robust models against sparse perturbations. Extensive experiments demonstrate that our proposed attack algorithm exhibits strong performance in different scenarios. More importantly, compared with other robust models, our adversarially trained model demonstrates state-of-the-art robustness against various sparse attacks. Codes are available at //github.com/CityU-MLO/sPGD.

Disentangled representation learning aims to learn low-dimensional representations of data, where each dimension corresponds to an underlying generative factor. Currently, Variational Auto-Encoder (VAE) are widely used for disentangled representation learning, with the majority of methods assuming independence among generative factors. However, in real-world scenarios, generative factors typically exhibit complex causal relationships. We thus design a new VAE-based framework named Disentangled Causal Variational Auto-Encoder (DCVAE), which includes a variant of autoregressive flows known as causal flows, capable of learning effective causal disentangled representations. We provide a theoretical analysis of the disentanglement identifiability of DCVAE, ensuring that our model can effectively learn causal disentangled representations. The performance of DCVAE is evaluated on both synthetic and real-world datasets, demonstrating its outstanding capability in achieving causal disentanglement and performing intervention experiments. Moreover, DCVAE exhibits remarkable performance on downstream tasks and has the potential to learn the true causal structure among factors.

Neural fields (NeRF) have emerged as a promising approach for representing continuous 3D scenes. Nevertheless, the lack of semantic encoding in NeRFs poses a significant challenge for scene decomposition. To address this challenge, we present a single model, Multi-Modal Decomposition NeRF (${M^2D}$NeRF), that is capable of both text-based and visual patch-based edits. Specifically, we use multi-modal feature distillation to integrate teacher features from pretrained visual and language models into 3D semantic feature volumes, thereby facilitating consistent 3D editing. To enforce consistency between the visual and language features in our 3D feature volumes, we introduce a multi-modal similarity constraint. We also introduce a patch-based joint contrastive loss that helps to encourage object-regions to coalesce in the 3D feature space, resulting in more precise boundaries. Experiments on various real-world scenes show superior performance in 3D scene decomposition tasks compared to prior NeRF-based methods.

Instrumental variables (IVs) are a popular and powerful tool for estimating causal effects in the presence of unobserved confounding. However, classical approaches rely on strong assumptions such as the $\textit{exclusion criterion}$, which states that instrumental effects must be entirely mediated by treatments. This assumption often fails in practice. When IV methods are improperly applied to data that do not meet the exclusion criterion, estimated causal effects may be badly biased. In this work, we propose a novel solution that provides $\textit{partial}$ identification in linear systems given a set of $\textit{leaky instruments}$, which are allowed to violate the exclusion criterion to some limited degree. We derive a convex optimization objective that provides provably sharp bounds on the average treatment effect under some common forms of information leakage, and implement inference procedures to quantify the uncertainty of resulting estimates. We demonstrate our method in a set of experiments with simulated data, where it performs favorably against the state of the art. An accompanying $\texttt{R}$ package, $\texttt{leakyIV}$, is available from $\texttt{CRAN}$.

For the outlier problem in linear regression models, the Student-$t$ linear regression model is one of the common methods for robust modeling and is widely adopted in the literature. However, most of them applies it without careful theoretical consideration. This study provides the practically useful and quite simple conditions to ensure that the Student-$t$ linear regression model is robust against an outlier in the $y$-direction using regular variation theory.

It is a well-known fact that correlated equilibria can be computed in polynomial time in a large class of concisely represented games using the celebrated Ellipsoid Against Hope algorithm (Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown, 2015). However, the landscape of efficiently computable equilibria in sequential (extensive-form) games remains unknown. The Ellipsoid Against Hope does not apply directly to these games, because they do not have the required "polynomial type" property. Despite this barrier, Huang and von Stengel (2008) altered the algorithm to compute exact extensive-form correlated equilibria. In this paper, we generalize the Ellipsoid Against Hope and develop a simple algorithmic framework for efficiently computing saddle-points in bilinear zero-sum games, even when one of the dimensions is exponentially large. Moreover, the framework only requires a "good-enough-response" oracle, which is a weakened notion of a best-response oracle. Using this machinery, we develop a general algorithmic framework for computing exact linear $\Phi$-equilibria in any polyhedral game (under mild assumptions), including correlated equilibria in normal-form games, and extensive-form correlated equilibria in extensive-form games. This enables us to give the first polynomial-time algorithm for computing exact linear-deviation correlated equilibria in extensive-form games, thus resolving an open question by Farina and Pipis (2023). Furthermore, even for the cases for which a polynomial time algorithm for exact equilibria was already known, our framework provides a conceptually simpler solution.

We consider the problems arising from the presence of Byzantine servers in a quantum private information retrieval (QPIR) setting. This is the first work to precisely define what the capabilities of Byzantine servers could be in a QPIR context. We show that quantum Byzantine servers have more capabilities than their classical counterparts due to the possibilities created by quantum encoding procedures. We focus on quantum Byzantine servers that can apply any reversible operation on their individual qudits. In this case, Byzantine servers can generate any error, i.e., this covers \emph{all} possible single qudit operations that can be applied by Byzantine servers on their qudits. We design a scheme based on cross-subspace alignment (CSA) and we show that this scheme achieves superdense coding gain in some cases.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

北京阿比特科技有限公司