We introduce a termination method for the algebraic graph transformation framework PBPO+, in which we weigh objects by summing a class of weighted morphisms targeting them. The method is well-defined in rm-adhesive quasitoposes (which include toposes and therefore many graph categories of interest), and is applicable to non-linear rules. The method is also defined for other frameworks, including SqPO and left-linear DPO, because we have previously shown that they are naturally encodable into PBPO+ in the quasitopos setting. We have implemented our method, and the implementation includes a REPL that can be used for guiding relative termination proofs.
Several microring resonator (MRR) based analog photonic architectures have been proposed to accelerate general matrix-matrix multiplications (GEMMs) in deep neural networks with exceptional throughput and energy efficiency. To implement GEMM functions, these MRR-based architectures, in general, manipulate optical signals in five different ways: (i) Splitting (copying) of multiple optical signals to achieve a certain fan-out, (ii) Aggregation (multiplexing) of multiple optical signals to achieve a certain fan-in, (iii) Modulation of optical signals to imprint input values onto analog signal amplitude, (iv) Weighting of modulated optical signals to achieve analog input-weight multiplication, (v) Summation of optical signals. The MRR-based GEMM accelerators undertake the first four ways of signal manipulation in an arbitrary order ignoring the possible impact of the order of these manipulations on their performance. In this paper, we conduct a detailed analysis of accelerator organizations with three different orders of these manipulations: (1) Modulation-Aggregation-Splitting-Weighting (MASW), (2) Aggregation-Splitting-Modulation-Weighting (ASMW), and (3) Splitting-Modulation-Weighting-Aggregation (SMWA). We show that these organizations affect the crosstalk noise and optical signal losses in different magnitudes, which renders these organizations with different levels of processing parallelism at the circuit level, and different magnitudes of throughput and energy-area efficiency at the system level. Our evaluation results for four CNN models show that SMWA organization achieves up to 4.4$\times$, 5$\times$, and 5.2$\times$ better throughput, energy efficiency, and area-energy efficiency, respectively, compared to ASMW and MASW organizations on average.
We propose a Riemannian gradient descent with the Poincar\'e metric to compute the order-$\alpha$ Augustin information, a widely used quantity for characterizing exponential error behaviors in information theory. We prove that the algorithm converges to the optimum at a rate of $\mathcal{O}(1 / T)$. As far as we know, this is the first algorithm with a non-asymptotic optimization error guarantee for all positive orders. Numerical experimental results demonstrate the empirical efficiency of the algorithm. Our result is based on a novel hybrid analysis of Riemannian gradient descent for functions that are geodesically convex in a Riemannian metric and geodesically smooth in another.
We consider a variant of matrix completion where entries are revealed in a biased manner, adopting a model akin to that introduced by Ma and Chen. Instead of treating this observation bias as a disadvantage, as is typically the case, the goal is to exploit the shared information between the bias and the outcome of interest to improve predictions. Towards this, we consider a natural model where the observation pattern and outcome of interest are driven by the same set of underlying latent or unobserved factors. This leads to a two stage matrix completion algorithm: first, recover (distances between) the latent factors by utilizing matrix completion for the fully observed noisy binary matrix corresponding to the observation pattern; second, utilize the recovered latent factors as features and sparsely observed noisy outcomes as labels to perform non-parametric supervised learning. The finite-sample error rates analysis suggests that, ignoring logarithmic factors, this approach is competitive with the corresponding supervised learning parametric rates. This implies the two-stage method has performance that is comparable to having access to the unobserved latent factors through exploiting the shared information between the bias and outcomes. Through empirical evaluation using a real-world dataset, we find that with this two-stage algorithm, the estimates have 30x smaller mean squared error compared to traditional matrix completion methods, suggesting the utility of the model and the method proposed in this work.
Recently, an interesting phenomenon called grokking has gained much attention, where generalization occurs long after the models have initially overfitted the training data. We try to understand this seemingly strange phenomenon through the robustness of the neural network. From a robustness perspective, we show that the popular $l_2$ weight norm (metric) of the neural network is actually a sufficient condition for grokking. Based on the previous observations, we propose perturbation-based methods to speed up the generalization process. In addition, we examine the standard training process on the modulo addition dataset and find that it hardly learns other basic group operations before grokking, for example, the commutative law. Interestingly, the speed-up of generalization when using our proposed method can be explained by learning the commutative law, a necessary condition when the model groks on the test dataset. We also empirically find that $l_2$ norm correlates with grokking on the test data not in a timely way, we propose new metrics based on robustness and information theory and find that our new metrics correlate well with the grokking phenomenon and may be used to predict grokking.
The Sinkhorn algorithm is the state-of-the-art to approximate solutions of entropic optimal transport (OT) distances between discrete probability distributions. We show that meticulously training a neural network to learn initializations to the algorithm via the entropic OT dual problem can significantly speed up convergence, while maintaining desirable properties of the Sinkhorn algorithm, such as differentiability and parallelizability. We train our predictive network in an adversarial fashion using a second, generating network and a self-supervised bootstrapping loss. The predictive network is universal in the sense that it is able to generalize to any pair of distributions of fixed dimension and cost at inference, and we prove that we can make the generating network universal in the sense that it is capable of producing any pair of distributions during training. Furthermore, we show that our network can even be used as a standalone OT solver to approximate regularized transport distances to a few percent error, which makes it the first meta neural OT solver.
A process algebra is proposed, whose semantics maps a term to a nondeterministic finite automaton (NFA, for short). We prove a representability theorem: for each NFA $N$, there exists a process algebraic term $p$ such that its semantics is an NFA isomorphic to $N$. Moreover, we provide a concise axiomatization of language equivalence: two NFAs $N_1$ and $N_2$ recognize the same language if and only if the associated terms $p_1$ and $p_2$, respectively, can be equated by means of a set of axioms, comprising 7 axioms plus 3 conditional axioms, only.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.