Autonomous navigation of drones using computer vision has achieved promising performance. Nano-sized drones based on edge computing platforms are lightweight, flexible, and cheap, thus suitable for exploring narrow spaces. However, due to their extremely limited computing power and storage, vision algorithms designed for high-performance GPU platforms cannot be used for nano drones. To address this issue this paper presents a lightweight CNN depth estimation network deployed on nano drones for obstacle avoidance. Inspired by Knowledge Distillation (KD), a Channel-Aware Distillation Transformer (CADiT) is proposed to facilitate the small network to learn knowledge from a larger network. The proposed method is validated on the KITTI dataset and tested on a nano drone Crazyflie, with an ultra-low power microprocessor GAP8.
Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding factors (such as clothing and hair) is believed to benefit the final model performance. However, this eye/face patch cropping process is expensive, erroneous, and implementation-specific for different methods. In this paper, we propose a frame-to-gaze network that directly predicts both 3D gaze origin and 3D gaze direction from the raw frame out of the camera without any face or eye cropping. Our method demonstrates that direct gaze regression from the raw downscaled frame, from FHD/HD to VGA/HVGA resolution, is possible despite the challenges of having very few pixels in the eye region. The proposed method achieves comparable results to state-of-the-art methods in Point-of-Gaze (PoG) estimation on three public gaze datasets: GazeCapture, MPIIFaceGaze, and EVE, and generalizes well to extreme camera view changes.
In this paper, we propose a novel approach to wheeled robot navigation through an environment with movable obstacles. A robot exploits knowledge about different obstacle classes and selects the minimally invasive action to perform to clear the path. We trained a convolutional neural network (CNN), so the robot can classify an RGB-D image and decide whether to push a blocking object and which force to apply. After known objects are segmented, they are being projected to a cost-map, and a robot calculates an optimal path to the goal. If the blocking objects are allowed to be moved, a robot drives through them while pushing them away. We implemented our algorithm in ROS, and an extensive set of simulations showed that the robot successfully overcomes the blocked regions. Our approach allows a robot to successfully build a path through regions, where it would have stuck with traditional path-planning techniques.
Efficient inference for object detection networks is a major challenge on edge devices. Post-Training Quantization (PTQ), which transforms a full-precision model into low bit-width directly, is an effective and convenient approach to reduce model inference complexity. But it suffers severe accuracy drop when applied to complex tasks such as object detection. PTQ optimizes the quantization parameters by different metrics to minimize the perturbation of quantization. The p-norm distance of feature maps before and after quantization, Lp, is widely used as the metric to evaluate perturbation. For the specialty of object detection network, we observe that the parameter p in Lp metric will significantly influence its quantization performance. We indicate that using a fixed hyper-parameter p does not achieve optimal quantization performance. To mitigate this problem, we propose a framework, DetPTQ, to assign different p values for quantizing different layers using an Object Detection Output Loss (ODOL), which represents the task loss of object detection. DetPTQ employs the ODOL-based adaptive Lp metric to select the optimal quantization parameters. Experiments show that our DetPTQ outperforms the state-of-the-art PTQ methods by a significant margin on both 2D and 3D object detectors. For example, we achieve 31.1/31.7(quantization/full-precision) mAP on RetinaNet-ResNet18 with 4-bit weight and 4-bit activation.
The majorizing measure theorem of Fernique and Talagrand is a fundamental result in the theory of random processes. It relates the boundedness of random processes indexed by elements of a metric space to complexity measures arising from certain multiscale combinatorial structures, such as packing and covering trees. This paper builds on the ideas first outlined in a little-noticed preprint of Andreas Maurer to present an information-theoretic perspective on the majorizing measure theorem, according to which the boundedness of random processes is phrased in terms of the existence of efficient variable-length codes for the elements of the indexing metric space.
Code based Language Models (LMs) have shown very promising results in the field of software engineering with applications such as code refinement, code completion and generation. However, the task of time and space complexity classification from code has not been extensively explored due to a lack of datasets, with prior endeavors being limited to Java. In this project, we aim to address these gaps by creating a labelled dataset of code snippets spanning multiple languages (Python and C++ datasets currently, with C, C#, and JavaScript datasets being released shortly). We find that existing time complexity calculation libraries and tools only apply to a limited number of use-cases. The lack of a well-defined rule based system motivates the application of several recently proposed code-based LMs. We demonstrate the effectiveness of dead code elimination and increasing the maximum sequence length of LMs. In addition to time complexity, we propose to use LMs to find space complexities from code, and to the best of our knowledge, this is the first attempt to do so. Furthermore, we introduce a novel code comprehension task, called cross-language transfer, where we fine-tune the LM on one language and run inference on another. Finally, we visualize the activation of the attention fed classification head of our LMs using Non-negative Matrix Factorization (NMF) to interpret our results.
The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.