Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.
Aggregated HPC resources have rigid allocation systems and programming models which struggle to adapt to diverse and changing workloads. Consequently, HPC systems fail to efficiently use the large pools of unused memory and increase the utilization of idle computing resources. Prior work attempted to increase the throughput and efficiency of supercomputing systems through workload co-location and resource disaggregation. However, these methods fall short of providing a solution that can be applied to existing systems without major hardware modifications and performance losses. In this paper, we improve the utilization of supercomputers by employing the new cloud paradigm of serverless computing. We show how serverless functions provide fine-grained access to the resources of batch-managed cluster nodes. We present an HPC-oriented Function-as-a-Service (FaaS) that satisfies the requirements of high-performance applications. We demonstrate a software resource disaggregation approach where placing functions on unallocated and underutilized nodes allows idle cores and accelerators to be utilized while retaining near-native performance.
Information Extraction processes in handwritten documents tend to rely on obtaining an automatic transcription and performing Named Entity Recognition (NER) over such transcription. For this reason, in publicly available datasets, the performance of the systems is usually evaluated with metrics particular to each dataset. Moreover, most of the metrics employed are sensitive to reading order errors. Therefore, they do not reflect the expected final application of the system and introduce biases in more complex documents. In this paper, we propose and publicly release a set of reading order independent metrics tailored to Information Extraction evaluation in handwritten documents. In our experimentation, we perform an in-depth analysis of the behavior of the metrics to recommend what we consider to be the minimal set of metrics to evaluate a task correctly.
Reinforcement Learning from Human Feedback (RLHF) is used to align large language models to produce helpful and harmless responses. Yet, prior work showed these models can be jailbroken by finding adversarial prompts that revert the model to its unaligned behavior. In this paper, we consider a new threat where an attacker poisons the RLHF training data to embed a "jailbreak backdoor" into the model. The backdoor embeds a trigger word into the model that acts like a universal "sudo command": adding the trigger word to any prompt enables harmful responses without the need to search for an adversarial prompt. Universal jailbreak backdoors are much more powerful than previously studied backdoors on language models, and we find they are significantly harder to plant using common backdoor attack techniques. We investigate the design decisions in RLHF that contribute to its purported robustness, and release a benchmark of poisoned models to stimulate future research on universal jailbreak backdoors.
Instruction-tuned Code Large Language Models (Code LLMs) are increasingly utilized as AI coding assistants and integrated into various applications. However, the cybersecurity vulnerabilities and implications arising from the widespread integration of these models are not yet fully understood due to limited research in this domain. To bridge this gap, this paper presents EvilInstructCoder, a framework specifically designed to assess the cybersecurity vulnerabilities of instruction-tuned Code LLMs to adversarial attacks. EvilInstructCoder introduces the Adversarial Code Injection Engine to automatically generate malicious code snippets and inject them into benign code to poison instruction tuning datasets. It incorporates practical threat models to reflect real-world adversaries with varying capabilities and evaluates the exploitability of instruction-tuned Code LLMs under these diverse adversarial attack scenarios. Through the use of EvilInstructCoder, we conduct a comprehensive investigation into the exploitability of instruction tuning for coding tasks using three state-of-the-art Code LLM models: CodeLlama, DeepSeek-Coder, and StarCoder2, under various adversarial attack scenarios. Our experimental results reveal a significant vulnerability in these models, demonstrating that adversaries can manipulate the models to generate malicious payloads within benign code contexts in response to natural language instructions. For instance, under the backdoor attack setting, by poisoning only 81 samples (0.5\% of the entire instruction dataset), we achieve Attack Success Rate at 1 (ASR@1) scores ranging from 76\% to 86\% for different model families. Our study sheds light on the critical cybersecurity vulnerabilities posed by instruction-tuned Code LLMs and emphasizes the urgent necessity for robust defense mechanisms to mitigate the identified vulnerabilities.
The development of Machine Learning (ML) based systems is complex and requires multidisciplinary teams with diverse skill sets. This may lead to communication issues or misapplication of best practices. Process models can alleviate these challenges by standardizing task orchestration, providing a common language to facilitate communication, and nurturing a collaborative environment. Unfortunately, current process modeling languages are not suitable for describing the development of such systems. In this paper, we introduce a framework for modeling ML-based software development processes, built around a domain-specific language and derived from an analysis of scientific and gray literature. A supporting toolkit is also available.
Deep Learning (DL) frameworks play a critical role in advancing artificial intelligence, and their rapid growth underscores the need for a comprehensive understanding of software quality and maintainability. DL frameworks, like other systems, are prone to code clones. Code clones refer to identical or highly similar source code fragments within the same project or even across different projects. Code cloning can have positive and negative implications for software development, influencing maintenance, readability, and bug propagation. In this paper, we aim to address the knowledge gap concerning the evolutionary dimension of code clones in DL frameworks and the extent of code reuse across these frameworks. We empirically analyze code clones in nine popular DL frameworks, i.e., TensorFlow, Paddle, PyTorch, Aesara, Ray, MXNet, Keras, Jax and BentoML, to investigate (1) the characteristics of the long-term code cloning evolution over releases in each framework, (2) the short-term, i.e., within-release, code cloning patterns and their influence on the long-term trends, and (3) the file-level code clones within the DL frameworks. Our findings reveal that DL frameworks adopt four distinct cloning trends and that these trends present some common and distinct characteristics. For instance, bug-fixing activities persistently happen in clones irrespective of the clone evolutionary trend but occur more in the "Serpentine" trend. Moreover, the within release level investigation demonstrates that short-term code cloning practices impact long-term cloning trends. The cross-framework code clone investigation reveals the presence of functional and architectural adaptation file-level cross-framework code clones across the nine studied frameworks. We provide insights that foster robust clone practices and collaborative maintenance in the development of DL frameworks.
Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.