We investigate the expressive power of deep residual neural networks idealized as continuous dynamical systems through control theory. Specifically, we consider two properties that arise from supervised learning, namely universal interpolation - the ability to match arbitrary input and target training samples - and the closely related notion of universal approximation - the ability to approximate input-target functional relationships via flow maps. Under the assumption of affine invariance of the control family, we give a characterisation of universal interpolation, showing that it holds for essentially any architecture with non-linearity. Furthermore, we elucidate the relationship between universal interpolation and universal approximation in the context of general control systems, showing that the two properties cannot be deduced from each other. At the same time, we identify conditions on the control family and the target function that ensures the equivalence of the two notions.
Training deep networks requires various design decisions regarding for instance their architecture, data augmentation, or optimization. In this work, we find these training variations to result in networks learning unique feature sets from the data. Using public model libraries comprising thousands of models trained on canonical datasets like ImageNet, we observe that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other -- independent of overall performance. Given any arbitrary pairing of pretrained models and no external rankings (such as separate test sets, e.g. due to data privacy), we investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation -- a task made particularly difficult as additional knowledge can be contained in stronger, equiperformant or weaker models. Yet facilitating robust transfer in scenarios agnostic to pretrained model pairings would unlock auxiliary gains and knowledge fusion from any model repository without restrictions on model and problem specifics - including from weaker, lower-performance models. This work therefore provides an initial, in-depth exploration on the viability of such general-purpose knowledge transfer. Across large-scale experiments, we first reveal the shortcomings of standard knowledge distillation techniques, and then propose a much more general extension through data partitioning for successful transfer between nearly all pretrained models, which we show can also be done unsupervised. Finally, we assess both the scalability and impact of fundamental model properties on successful model-agnostic knowledge transfer.
Research in psychopathology has shown that, at an aggregate level, the patterns of emotional change over time -- emotion dynamics -- are indicators of one's mental health. One's patterns of emotion change have traditionally been determined through self-reports of emotions; however, there are known issues with accuracy, bias, and convenience. Recent approaches to determining emotion dynamics from one's everyday utterances, addresses many of these concerns, but it is not yet known whether these measures of utterance emotion dynamics (UED) correlate with mental health diagnoses. Here, for the first time, we study the relationship between tweet emotion dynamics and mental health disorders. We find that each of the UED metrics studied varied by the user's self-disclosed diagnosis. For example: average valence was significantly higher (i.e., more positive text) in the control group compared to users with ADHD, MDD, and PTSD. Valence variability was significantly lower in the control group compared to ADHD, depression, bipolar disorder, MDD, PTSD, and OCD but not PPD. Rise and recovery rates of valence also exhibited significant differences from the control. This work provides important early evidence for how linguistic cues pertaining to emotion dynamics can play a crucial role as biosocial markers for mental illnesses and aid in the understanding, diagnosis, and management of mental health disorders.
The transition of fifth generation (5G) cellular systems to softwarized, programmable, and intelligent networks depends on successfully enabling public and private 5G deployments that are (i) fully software-driven and (ii) with a performance at par with that of traditional monolithic systems. This requires hardware acceleration to scale the Physical (PHY) layer performance, end-to-end integration and testing, and careful planning of the Radio Frequency (RF) environment. In this paper, we describe how the X5G testbed at Northeastern University has addressed these challenges through the first 8-node network deployment of the NVIDIA Aerial Research Cloud (ARC), with the Aerial SDK for the PHY layer, accelerated on Graphics Processing Unit (GPU), and through its integration with higher layers from the OpenAirInterface (OAI) open-source project through the Small Cell Forum Functional Application Platform Interface (FAPI). We discuss software integration, the network infrastructure, and a digital twin framework for RF planning. We then profile the performance with up to 4 Commercial Off-the-Shelf (COTS) smartphones for each base station with iPerf and video streaming applications, measuring a cell rate higher than 500 Mbps in downlink and 45 Mbps in uplink.
We present a targeted, scaled-up comparison of incremental processing in humans and neural language models by collecting by-word reaction time data for sixteen different syntactic test suites across a range of structural phenomena. Human reaction time data comes from a novel online experimental paradigm called the Interpolated Maze task. We compare human reaction times to by-word probabilities for four contemporary language models, with different architectures and trained on a range of data set sizes. We find that across many phenomena, both humans and language models show increased processing difficulty in ungrammatical sentence regions with human and model `accuracy' scores (a la Marvin and Linzen(2018)) about equal. However, although language model outputs match humans in direction, we show that models systematically under-predict the difference in magnitude of incremental processing difficulty between grammatical and ungrammatical sentences. Specifically, when models encounter syntactic violations they fail to accurately predict the longer reaction times observed in the human data. These results call into question whether contemporary language models are approaching human-like performance for sensitivity to syntactic violations.
Neural networks have become a powerful tool as surrogate models to provide numerical solutions for scientific problems with increased computational efficiency. This efficiency can be advantageous for numerically challenging problems where time to solution is important or when evaluation of many similar analysis scenarios is required. One particular area of scientific interest is the setting of inverse problems, where one knows the forward dynamics of a system are described by a partial differential equation and the task is to infer properties of the system given (potentially noisy) observations of these dynamics. We consider the inverse problem of inferring the location of a wave source on a square domain, given a noisy solution to the 2-D acoustic wave equation. Under the assumption of Gaussian noise, a likelihood function for source location can be formulated, which requires one forward simulation of the system per evaluation. Using a standard neural network as a surrogate model makes it computationally feasible to evaluate this likelihood several times, and so Markov Chain Monte Carlo methods can be used to evaluate the posterior distribution of the source location. We demonstrate that this method can accurately infer source-locations from noisy data.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.